Mou Kailong, Yang Ming, Zhang Mengjian, Wang Deguang
School of Electrical Engineering, Guizhou University, Guiyang, 550025, China.
School of Computer Science and Engineering, South China University of Technology, Guangzhou, 510006, China.
Sci Rep. 2024 Sep 27;14(1):22189. doi: 10.1038/s41598-024-73473-x.
In the domain of control engineering, effectively tuning the parameters of proportional-integral-derivative (PID) controllers has persistently posed a challenge. This study proposes a hybrid algorithm (HGJGSO) that combines golden jackal optimization (GJO) and golden sine algorithm (Gold-SA) for tuning PID controllers. To accelerate the convergence of GJO, a nonlinear parameter adaptation strategy is incorporated. The improved GJO is combined with Gold-SA, capitalizing on the expedited convergence speed offered by the improved GJO, coupled with the global optimization and precise search capabilities of Gold-SA. HGJGSO maximizes the strengths of two algorithms, facilitating a comprehensive and balanced exploration and exploitation. The effectiveness of HGJGSO is assessed through tuning the PID controllers for three typical systems. The results indicate that HGJGSO surpasses the comparison tuning methods. To evaluate the applicability of HGJGSO, it is used to tune the cascade PID controllers for trajectory tracking in a quadrotor UAV. The results demonstrate the superiority of HGJGSO in addressing practical challenges.
在控制工程领域,有效调整比例积分微分(PID)控制器的参数一直是一项挑战。本研究提出了一种将金豺优化算法(GJO)和黄金正弦算法(Gold-SA)相结合的混合算法(HGJGSO),用于调整PID控制器。为了加速GJO的收敛,引入了一种非线性参数自适应策略。将改进后的GJO与Gold-SA相结合,利用改进后的GJO提供的更快收敛速度,以及Gold-SA的全局优化和精确搜索能力。HGJGSO最大限度地发挥了两种算法的优势,促进了全面且平衡的探索与利用。通过对三个典型系统的PID控制器进行调整来评估HGJGSO的有效性。结果表明,HGJGSO优于比较调整方法。为了评估HGJGSO的适用性,将其用于调整四旋翼无人机轨迹跟踪的串级PID控制器。结果证明了HGJGSO在应对实际挑战方面的优越性。