Suppr超能文献

构建豚鼠心肌细胞的综合计算模型。

Toward an integrative computational model of the Guinea pig cardiac myocyte.

作者信息

Gauthier Laura Doyle, Greenstein Joseph L, Winslow Raimond L

机构信息

Department of Biomedical Engineering, Institute for Computational Medicine, The Johns Hopkins University School of Medicine and Whiting School of Engineering Baltimore, MD, USA.

出版信息

Front Physiol. 2012 Jul 5;3:244. doi: 10.3389/fphys.2012.00244. eCollection 2012.

Abstract

The local control theory of excitation-contraction (EC) coupling asserts that regulation of calcium (Ca(2+)) release occurs at the nanodomain level, where openings of single L-type Ca(2+) channels (LCCs) trigger openings of small clusters of ryanodine receptors (RyRs) co-localized within the dyad. A consequence of local control is that the whole-cell Ca(2+) transient is a smooth continuous function of influx of Ca(2+) through LCCs. While this so-called graded release property has been known for some time, its functional importance to the integrated behavior of the cardiac ventricular myocyte has not been fully appreciated. We previously formulated a biophysically based model, in which LCCs and RyRs interact via a coarse-grained representation of the dyadic space. The model captures key features of local control using a low-dimensional system of ordinary differential equations. Voltage-dependent gain and graded Ca(2+) release are emergent properties of this model by virtue of the fact that model formulation is closely based on the sub-cellular basis of local control. In this current work, we have incorporated this graded release model into a prior model of guinea pig ventricular myocyte electrophysiology, metabolism, and isometric force production. The resulting integrative model predicts the experimentally observed causal relationship between action potential (AP) shape and timing of Ca(2+) and force transients, a relationship that is not explained by models lacking the graded release property. Model results suggest that even relatively subtle changes in AP morphology that may result, for example, from remodeling of membrane transporter expression in disease or spatial variation in cell properties, may have major impact on the temporal waveform of Ca(2+) transients, thus influencing tissue level electromechanical function.

摘要

兴奋 - 收缩(EC)偶联的局部控制理论认为,钙(Ca(2+))释放的调节发生在纳米域水平,单个L型钙通道(LCCs)的开放触发了与二元体共定位的小簇兰尼碱受体(RyRs)的开放。局部控制的一个结果是,全细胞Ca(2+)瞬变是通过LCCs流入的Ca(2+)的平滑连续函数。虽然这种所谓的分级释放特性已经为人所知一段时间了,但其对心室肌细胞整合行为的功能重要性尚未得到充分认识。我们之前构建了一个基于生物物理学的模型,其中LCCs和RyRs通过二元体空间的粗粒度表示相互作用。该模型使用常微分方程的低维系统捕捉了局部控制的关键特征。由于模型构建紧密基于局部控制的亚细胞基础,电压依赖性增益和分级Ca(2+)释放是该模型的涌现特性。在当前工作中,我们将这个分级释放模型纳入了先前的豚鼠心室肌细胞电生理学、代谢和等长力产生模型中。所得的整合模型预测了实验观察到的动作电位(AP)形状与Ca(2+)和力瞬变时间之间的因果关系,这种关系是缺乏分级释放特性的模型无法解释的。模型结果表明,即使是AP形态相对细微的变化,例如可能由疾病中膜转运蛋白表达的重塑或细胞特性的空间变化引起的变化,也可能对Ca(2+)瞬变的时间波形产生重大影响,从而影响组织水平的机电功能。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0c30/3389778/4018873d4812/fphys-03-00244-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验