Suppr超能文献

由反射性肌动蛋白反馈驱动的波型模式的时相:从静态极化到动态波行为的转变。

Regimes of wave type patterning driven by refractory actin feedback: transition from static polarization to dynamic wave behaviour.

机构信息

Department of Mathematics, The University of British Columbia, Vancouver, BC V6T 1Z2, Canada.

出版信息

Phys Biol. 2012 Aug;9(4):046005. doi: 10.1088/1478-3975/9/4/046005. Epub 2012 Jul 11.

Abstract

Patterns of waves, patches, and peaks of actin are observed experimentally in many living cells. Models of this phenomenon have been based on the interplay between filamentous actin (F-actin) and its nucleation promoting factors (NPFs) that activate the Arp2/3 complex. Here we present an alternative biologically-motivated model for F-actin-NPF interaction based on properties of GTPases acting as NPFs. GTPases (such as Cdc42, Rac) are known to promote actin nucleation, and to have active membrane-bound and inactive cytosolic forms. The model is a natural extension of a previous mathematical mini-model of small GTPases that generates static cell polarization. Like other modellers, we assume that F-actin negative feedback shapes the observed patterns by suppressing the trailing edge of NPF-generated wave-fronts, hence localizing the activity spatially. We find that our NPF-actin model generates a rich set of behaviours, spanning a transition from static polarization to single pulses, reflecting waves, wave trains, and oscillations localized at the cell edge. The model is developed with simplicity in mind to investigate the interaction between nucleation promoting factor kinetics and negative feedback. It explains distinct types of pattern initiation mechanisms, and identifies parameter regimes corresponding to distinct behaviours. We show that weak actin feedback yields static patterning, moderate feedback yields dynamical behaviour such as travelling waves, and strong feedback can lead to wave trains or total suppression of patterning. We use a recently introduced nonlinear bifurcation analysis to explore the parameter space of this model and predict its behaviour with simulations validating those results.

摘要

在许多活细胞中都观察到了肌动蛋白的波、斑和峰的模式。这一现象的模型基于丝状肌动蛋白(F-actin)与其成核促进因子(NPFs)之间的相互作用,NPFs 可激活 Arp2/3 复合物。在这里,我们提出了一种基于 GTPases 作为 NPFs 的特性的替代的、具有生物学意义的 F-actin-NPF 相互作用模型。众所周知,GTPases(如 Cdc42、Rac)可促进肌动蛋白成核,并具有活性膜结合形式和非活性细胞溶质形式。该模型是之前关于小 GTPases 的数学微型模型的自然延伸,该模型可产生静态细胞极化。与其他建模者一样,我们假设 F-actin 的负反馈通过抑制 NPF 生成的波前的滞后边缘来塑造观察到的模式,从而在空间上定位活性。我们发现,我们的 NPF-actin 模型产生了丰富的行为集,跨越了从静态极化到单个脉冲的转变,反映了波、波列和位于细胞边缘的振荡。该模型的开发旨在研究成核促进因子动力学和负反馈之间的相互作用。它解释了不同类型的模式启动机制,并确定了与不同行为相对应的参数范围。我们表明,弱肌动蛋白反馈会产生静态图案,适度的反馈会产生动态行为,如传播波,而强反馈会导致波列或完全抑制图案。我们使用最近引入的非线性分岔分析来探索该模型的参数空间,并通过模拟验证这些结果来预测其行为。

相似文献

2
A model for intracellular actin waves explored by nonlinear local perturbation analysis.
J Theor Biol. 2013 Oct 7;334:149-61. doi: 10.1016/j.jtbi.2013.06.020. Epub 2013 Jul 2.
3
Patterning of the cell cortex by Rho GTPases.
Nat Rev Mol Cell Biol. 2024 Apr;25(4):290-308. doi: 10.1038/s41580-023-00682-z. Epub 2024 Jan 3.
4
Cell Size, Mechanical Tension, and GTPase Signaling in the Single Cell.
Bull Math Biol. 2020 Feb 3;82(2):28. doi: 10.1007/s11538-020-00702-5.
5
6
Spots, stripes, and spiral waves in models for static and motile cells : GTPase patterns in cells.
J Math Biol. 2021 Mar 4;82(4):28. doi: 10.1007/s00285-021-01550-0.
7
A continuum model of actin waves in Dictyostelium discoideum.
PLoS One. 2013 May 31;8(5):e64272. doi: 10.1371/journal.pone.0064272. Print 2013.
8
Rho and F-actin self-organize within an artificial cell cortex.
Curr Biol. 2021 Dec 20;31(24):5613-5621.e5. doi: 10.1016/j.cub.2021.10.021. Epub 2021 Nov 4.
9
Diffusion, capture and recycling of SCAR/WAVE and Arp2/3 complexes observed in cells by single-molecule imaging.
J Cell Sci. 2012 Mar 1;125(Pt 5):1165-76. doi: 10.1242/jcs.091157. Epub 2012 Feb 20.
10
Competition and synergy of Arp2/3 and formins in nucleating actin waves.
Cell Rep. 2024 Jul 23;43(7):114423. doi: 10.1016/j.celrep.2024.114423. Epub 2024 Jul 4.

引用本文的文献

1
Linking spontaneous and stimulated spine dynamics.
Commun Biol. 2023 Sep 11;6(1):930. doi: 10.1038/s42003-023-05303-1.
2
From actin waves to mechanism and back: How theory aids biological understanding.
Elife. 2023 Jul 10;12:e87181. doi: 10.7554/eLife.87181.
4
Polarity and mixed-mode oscillations may underlie different patterns of cellular migration.
Sci Rep. 2023 Mar 14;13(1):4223. doi: 10.1038/s41598-023-31042-8.
5
A versatile cortical pattern-forming circuit based on Rho, F-actin, Ect2, and RGA-3/4.
J Cell Biol. 2022 Aug 1;221(8). doi: 10.1083/jcb.202203017. Epub 2022 Jun 16.
6
Spatiotemporal development of coexisting wave domains of Rho activity in the cell cortex.
Sci Rep. 2021 Sep 30;11(1):19512. doi: 10.1038/s41598-021-99029-x.
7
Comparative mapping of crawling-cell morphodynamics in deep learning-based feature space.
PLoS Comput Biol. 2021 Aug 12;17(8):e1009237. doi: 10.1371/journal.pcbi.1009237. eCollection 2021 Aug.
8
Three-dimensional stochastic simulation of chemoattractant-mediated excitability in cells.
PLoS Comput Biol. 2021 Jul 14;17(7):e1008803. doi: 10.1371/journal.pcbi.1008803. eCollection 2021 Jul.
9
Spots, stripes, and spiral waves in models for static and motile cells : GTPase patterns in cells.
J Math Biol. 2021 Mar 4;82(4):28. doi: 10.1007/s00285-021-01550-0.

本文引用的文献

1
Cell shape dynamics: from waves to migration.
PLoS Comput Biol. 2012;8(3):e1002392. doi: 10.1371/journal.pcbi.1002392. Epub 2012 Mar 15.
2
Cell motility resulting from spontaneous polymerization waves.
Phys Rev Lett. 2011 Dec 16;107(25):258103. doi: 10.1103/PhysRevLett.107.258103.
4
Biased excitable networks: how cells direct motion in response to gradients.
Curr Opin Cell Biol. 2012 Apr;24(2):245-53. doi: 10.1016/j.ceb.2011.11.009. Epub 2011 Dec 10.
5
Polarization of PAR proteins by advective triggering of a pattern-forming system.
Science. 2011 Nov 25;334(6059):1137-41. doi: 10.1126/science.1208619. Epub 2011 Oct 20.
6
A comparison of mathematical models for polarization of single eukaryotic cells in response to guided cues.
PLoS Comput Biol. 2011 Apr;7(4):e1001121. doi: 10.1371/journal.pcbi.1001121. Epub 2011 Apr 28.
7
Rho GTPases and their role in organizing the actin cytoskeleton.
J Cell Sci. 2011 Mar 1;124(Pt 5):679-83. doi: 10.1242/jcs.064964.
8
Dendritic actin filament nucleation causes traveling waves and patches.
Phys Rev Lett. 2010 Jun 4;104(22):228102. doi: 10.1103/PhysRevLett.104.228102. Epub 2010 Jun 1.
9
Cells navigate with a local-excitation, global-inhibition-biased excitable network.
Proc Natl Acad Sci U S A. 2010 Oct 5;107(40):17079-86. doi: 10.1073/pnas.1011271107. Epub 2010 Sep 23.
10
Propagating waves separate two states of actin organization in living cells.
HFSP J. 2009 Dec;3(6):412-27. doi: 10.2976/1.3239407. Epub 2009 Nov 30.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验