Suppr超能文献

细胞皮层中 Rho 活性共存波域的时空发展。

Spatiotemporal development of coexisting wave domains of Rho activity in the cell cortex.

机构信息

School of Biology, Georgia Institute of Technology, Atlanta, GA, USA.

Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA.

出版信息

Sci Rep. 2021 Sep 30;11(1):19512. doi: 10.1038/s41598-021-99029-x.

Abstract

The Rho family GTPases are molecular switches that regulate cytoskeletal dynamics and cell movement through a complex spatiotemporal organization of their activity. In Patiria miniata (starfish) oocytes under in vitro experimental conditions (with overexpressed Ect2, induced expression of Δ90 cyclin B, and roscovitine treatment), such activity generates multiple co-existing regions of coherent propagation of actin waves. Here we use computational modeling to investigate the development and properties of such wave domains. The model reveals that the formation of wave domains requires a balance between the activation and inhibition in the Rho signaling motif. Intriguingly, the development of the wave domains is preceded by a stage of low-activity quasi-static patterns, which may not be readily observed in experiments. Spatiotemporal patterns of this stage and the different paths of their destabilization define the behavior of the system in the later high-activity (observable) stage. Accounting for a strong intrinsic noise allowed us to achieve good quantitative agreement between simulated dynamics in different parameter regimes of the model and different wave dynamics in Patiria miniata and wild type Xenopus laevis (frog) data. For quantitative comparison of simulated and experimental results, we developed an automated method of wave domain detection, which revealed a sharp reversal in the process of pattern formation in starfish oocytes. Overall, our findings provide an insight into spatiotemporal regulation of complex and diverse but still computationally reproducible cell-level actin dynamics.

摘要

Rho 家族 GTPases 是分子开关,通过其活性的复杂时空组织来调节细胞骨架动力学和细胞运动。在体外实验条件下(过表达 Ect2、诱导表达 Δ90 周期蛋白 B 和罗司维亭处理)的 Patiria miniata(海星)卵母细胞中,这种活性产生了多个共存的肌动蛋白波相干传播区域。在这里,我们使用计算建模来研究这种波域的发展和特性。该模型表明,波域的形成需要 Rho 信号基序中的激活和抑制之间的平衡。有趣的是,波域的发展之前是一个低活性准静态模式的阶段,在实验中可能不容易观察到。该阶段的时空模式及其失稳的不同路径定义了系统在后期高活性(可观察)阶段的行为。考虑到强固有噪声,我们能够在模型的不同参数区域的模拟动力学和 Patiria miniata 和野生型 Xenopus laevis(青蛙)数据的不同波动力学之间实现良好的定量一致性。为了对模拟结果和实验结果进行定量比较,我们开发了一种自动的波域检测方法,该方法揭示了海星卵母细胞中模式形成过程的急剧逆转。总的来说,我们的研究结果提供了对复杂多样但仍然可在计算上重现的细胞水平肌动蛋白动力学的时空调控的深入了解。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bef6/8484676/aa510ee0e822/41598_2021_99029_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验