Department of Epidemiology and Biostatistics, Case Western Reserve University, Cleveland, OH, USA.
Stat Med. 2012 Dec 20;31(29):3931-45. doi: 10.1002/sim.5469. Epub 2012 Jul 11.
Numerous methods for joint analysis of longitudinal measures of a continuous outcome y and a time to event outcome T have recently been developed either to focus on the longitudinal data y while correcting for nonignorable dropout, to predict the survival outcome T using the longitudinal data y, or to examine the relationship between y and T. The motivating problem for our work is in joint modeling of the serial measurements of pulmonary function (FEV1% predicted) and survival in cystic fibrosis (CF) patients using registry data. Within the CF registry data, an additional complexity is that not all patients have been followed from birth; therefore, some patients have delayed entry into the study while others may have been missed completely, giving rise to a left truncated distribution. This paper shows in joint modeling situations where y and T are not independent, that it is necessary to account for this left truncation to obtain valid parameter estimates related to both survival and the longitudinal marker. We assume a linear random effects model for FEV1% predicted, where the random intercept and slope of FEV1% predicted, along with a specified transformation of the age at death follow a trivariate normal distribution. We develop an expectation-maximization algorithm for maximum likelihood estimation of parameters, which takes left truncation and right censoring of survival times into account. The methods are illustrated using simulation studies and using data from CF patients in a registry followed at Rainbow Babies and Children's Hospital, Cleveland, OH.
最近已经开发出了许多用于联合分析连续结果 y 和事件时间结果 T 的纵向测量的方法,这些方法要么专注于纵向数据 y ,同时纠正不可忽略的缺失,要么使用纵向数据 y 预测生存结果 T ,或者检验 y 和 T 之间的关系。我们工作的动机问题是使用登记数据联合建模肺功能(FEV1%预测)的序列测量和囊性纤维化(CF)患者的生存。在 CF 登记数据中,一个额外的复杂性是并非所有患者都从出生开始被跟踪;因此,一些患者延迟进入研究,而其他患者可能完全被遗漏,导致左截断分布。本文在 y 和 T 不独立的联合建模情况下表明,有必要考虑这种左截断,以获得与生存和纵向标记物都相关的有效参数估计值。我们假设 FEV1%预测的线性随机效应模型,其中 FEV1%预测的随机截距和斜率以及死亡时年龄的指定变换遵循三变量正态分布。我们开发了一种期望最大化算法,用于最大似然估计参数,该算法考虑了生存时间的左截断和右删失。该方法使用模拟研究和俄亥俄州克利夫兰市彩虹婴儿儿童医院登记处的 CF 患者的数据进行了说明。