Suppr超能文献

联合建模左截断的纵向和生存数据之间的关系及其在囊性纤维化中的应用。

Jointly modeling the relationship between longitudinal and survival data subject to left truncation with applications to cystic fibrosis.

机构信息

Department of Epidemiology and Biostatistics, Case Western Reserve University, Cleveland, OH, USA.

出版信息

Stat Med. 2012 Dec 20;31(29):3931-45. doi: 10.1002/sim.5469. Epub 2012 Jul 11.

Abstract

Numerous methods for joint analysis of longitudinal measures of a continuous outcome y and a time to event outcome T have recently been developed either to focus on the longitudinal data y while correcting for nonignorable dropout, to predict the survival outcome T using the longitudinal data y, or to examine the relationship between y and T. The motivating problem for our work is in joint modeling of the serial measurements of pulmonary function (FEV1% predicted) and survival in cystic fibrosis (CF) patients using registry data. Within the CF registry data, an additional complexity is that not all patients have been followed from birth; therefore, some patients have delayed entry into the study while others may have been missed completely, giving rise to a left truncated distribution. This paper shows in joint modeling situations where y and T are not independent, that it is necessary to account for this left truncation to obtain valid parameter estimates related to both survival and the longitudinal marker. We assume a linear random effects model for FEV1% predicted, where the random intercept and slope of FEV1% predicted, along with a specified transformation of the age at death follow a trivariate normal distribution. We develop an expectation-maximization algorithm for maximum likelihood estimation of parameters, which takes left truncation and right censoring of survival times into account. The methods are illustrated using simulation studies and using data from CF patients in a registry followed at Rainbow Babies and Children's Hospital, Cleveland, OH.

摘要

最近已经开发出了许多用于联合分析连续结果 y 和事件时间结果 T 的纵向测量的方法,这些方法要么专注于纵向数据 y ,同时纠正不可忽略的缺失,要么使用纵向数据 y 预测生存结果 T ,或者检验 y 和 T 之间的关系。我们工作的动机问题是使用登记数据联合建模肺功能(FEV1%预测)的序列测量和囊性纤维化(CF)患者的生存。在 CF 登记数据中,一个额外的复杂性是并非所有患者都从出生开始被跟踪;因此,一些患者延迟进入研究,而其他患者可能完全被遗漏,导致左截断分布。本文在 y 和 T 不独立的联合建模情况下表明,有必要考虑这种左截断,以获得与生存和纵向标记物都相关的有效参数估计值。我们假设 FEV1%预测的线性随机效应模型,其中 FEV1%预测的随机截距和斜率以及死亡时年龄的指定变换遵循三变量正态分布。我们开发了一种期望最大化算法,用于最大似然估计参数,该算法考虑了生存时间的左截断和右删失。该方法使用模拟研究和俄亥俄州克利夫兰市彩虹婴儿儿童医院登记处的 CF 患者的数据进行了说明。

相似文献

5
Explaining the Sex Effect on Survival in Cystic Fibrosis: a Joint Modeling Study of UK Registry Data.
Epidemiology. 2020 Nov;31(6):872-879. doi: 10.1097/EDE.0000000000001248.
6
[Italian Cystic Fibrosis Registry (ICFR). Report 2019-2020].
Epidemiol Prev. 2022 Jul-Aug;46(4 Suppl 2):1-38. doi: 10.19191/EP22.4S2.060.
8
[Italian Cystic Fibrosis Registry (ICFR). Report 2017-2018].
Epidemiol Prev. 2021 May-Jun;45(3 Suppl 1):1-37. doi: 10.19191/EP21.3.S1.050.
9
Boosting joint models for longitudinal and time-to-event data.
Biom J. 2017 Nov;59(6):1104-1121. doi: 10.1002/bimj.201600158. Epub 2017 Mar 21.
10
Heterogeneity in Survival in Adult Patients With Cystic Fibrosis With FEV < 30% of Predicted in the United States.
Chest. 2017 Jun;151(6):1320-1328. doi: 10.1016/j.chest.2017.01.019. Epub 2017 Jan 20.

引用本文的文献

1
Semiparametric joint modeling for biomarker trajectory before disease onset.
Biometrics. 2025 Apr 2;81(2). doi: 10.1093/biomtc/ujaf064.
2
Modeling unmeasured baseline information in observational time-to-event data subject to delayed study entry.
Stat Methods Med Res. 2023 May;32(5):1021-1032. doi: 10.1177/09622802231163334. Epub 2023 Mar 16.
4
Harnessing repeated measurements of predictor variables for clinical risk prediction: a review of existing methods.
Diagn Progn Res. 2020 Jul 9;4:9. doi: 10.1186/s41512-020-00078-z. eCollection 2020.
5
Integrating latent classes in the Bayesian shared parameter joint model of longitudinal and survival outcomes.
Stat Methods Med Res. 2020 Nov;29(11):3294-3307. doi: 10.1177/0962280220924680. Epub 2020 May 21.
7
Developmental considerations in survival models as applied to substance use research.
Addict Behav. 2019 Jul;94:36-41. doi: 10.1016/j.addbeh.2018.11.028. Epub 2018 Nov 20.

本文引用的文献

1
Shared parameter models for the joint analysis of longitudinal data and event times.
Stat Med. 2006 Jan 15;25(1):143-63. doi: 10.1002/sim.2249.
3
Handling drop-out in longitudinal studies.
Stat Med. 2004 May 15;23(9):1455-97. doi: 10.1002/sim.1728.
4
Joint modelling of longitudinal measurements and event time data.
Biostatistics. 2000 Dec;1(4):465-80. doi: 10.1093/biostatistics/1.4.465.
6
Cystic fibrosis.
Curr Opin Infect Dis. 2002 Apr;15(2):175-82. doi: 10.1097/00001432-200204000-00013.
8
Estimation and comparison of rates of change in longitudinal studies with informative drop-outs.
Stat Med. 1999 May 30;18(10):1215-33. doi: 10.1002/(sici)1097-0258(19990530)18:10<1215::aid-sim118>3.0.co;2-6.
9
Spirometric reference values from a sample of the general U.S. population.
Am J Respir Crit Care Med. 1999 Jan;159(1):179-87. doi: 10.1164/ajrccm.159.1.9712108.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验