Suppr超能文献

观测性生存数据中存在未测量的基线信息,且研究存在延迟入组。

Modeling unmeasured baseline information in observational time-to-event data subject to delayed study entry.

机构信息

Institute of Statistics, Ulm University, Ulm, Germany.

Institute of Pharmacology and Preventive Medicine, Mahlow, Germany.

出版信息

Stat Methods Med Res. 2023 May;32(5):1021-1032. doi: 10.1177/09622802231163334. Epub 2023 Mar 16.

Abstract

Unmeasured baseline information in left-truncated data situations frequently occurs in observational time-to-event analyses. For instance, a typical timescale in trials of antidiabetic treatment is "time since treatment initiation", but individuals may have initiated treatment before the start of longitudinal data collection. When the focus is on baseline effects, one widespread approach is to fit a Cox proportional hazards model incorporating the measurements at delayed study entry. This has been criticized because of the potential time dependency of covariates. We tackle this problem by using a Bayesian joint model that combines a mixed-effects model for the longitudinal trajectory with a proportional hazards model for the event of interest incorporating the baseline covariate, possibly unmeasured in the presence of left truncation. The novelty is that our procedure is not used to account for non-continuously monitored longitudinal covariates in right-censored time-to-event studies, but to utilize these trajectories to make inferences about missing baseline measurements in left-truncated data. Simulating times-to-event depending on baseline covariates we also compared our proposal to a simpler two-stage approach which performed favorably. Our approach is illustrated by investigating the impact of baseline blood glucose levels on antidiabetic treatment failure using data from a German diabetes register.

摘要

在观察性生存时间分析中,左截断数据情况下经常会出现未测量的基线信息。例如,抗糖尿病治疗试验中的一个典型时间尺度是“治疗开始后的时间”,但个体可能在纵向数据收集开始之前就已经开始治疗。当重点是基线效应时,一种广泛使用的方法是拟合包含延迟研究入组时测量值的 Cox 比例风险模型。由于协变量的潜在时间依赖性,这种方法受到了批评。我们通过使用贝叶斯联合模型来解决这个问题,该模型将纵向轨迹的混合效应模型与包含基线协变量的比例风险模型结合在一起,在存在左截断的情况下,该协变量可能无法测量。新颖之处在于,我们的程序不是用于在右删失生存时间研究中解释非连续监测的纵向协变量,而是利用这些轨迹来推断左截断数据中缺失的基线测量值。根据基线协变量模拟生存时间,我们还将我们的建议与表现良好的更简单的两阶段方法进行了比较。我们通过使用来自德国糖尿病登记处的数据来调查基线血糖水平对抗糖尿病治疗失败的影响来说明我们的方法。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f4af/10248294/3a93d73fd7c6/10.1177_09622802231163334-fig1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验