Department of Cell and Developmental Biology, Vanderbilt University, Nashville, Tennessee, USA.
Cytoskeleton (Hoboken). 2012 Oct;69(10):686-99. doi: 10.1002/cm.21044. Epub 2012 Jul 11.
Mitotic exit and cell division must be spatially and temporally integrated to facilitate equal division of genetic material between daughter cells. In the fission yeast, Schizosaccharomyces pombe, a spindle pole body (SPB) localized signaling cascade termed the septation initiation network (SIN) couples mitotic exit with cytokinesis. The SIN is controlled at many levels to ensure that cytokinesis is executed once per cell cycle and only after cells segregate their DNA. An interesting facet of the SIN is that its activity is asymmetric on the two SPBs during anaphase; however, how and why the SIN is asymmetric has remained elusive. Many key factors controlling SIN asymmetry have now been identified, shedding light on the significance of SIN asymmetry in regulating cytokinesis. In this review, we highlight recent advances in our understanding of SIN regulation, with an emphasis on how SIN asymmetry is achieved and how this aspect of SIN regulation fine-tunes cytokinesis.
有丝分裂后期和细胞分裂必须在空间和时间上进行整合,以促进遗传物质在子细胞之间均等分配。在裂殖酵母,Schizosaccharomyces pombe 中,一种纺锤体极体(SPB)定位的信号级联反应称为分隔起始网络(SIN),将有丝分裂后期与胞质分裂偶联。SIN 在许多水平上受到控制,以确保细胞周期中仅在细胞分离其 DNA 后执行一次胞质分裂。SIN 的一个有趣方面是,在后期它在两个 SPB 上的活性是不对称的;然而,SIN 为何以及如何不对称仍然难以捉摸。现在已经确定了许多控制 SIN 不对称的关键因素,这揭示了 SIN 不对称在调节胞质分裂中的重要性。在这篇综述中,我们强调了最近对 SIN 调节的理解进展,重点介绍了如何实现 SIN 不对称以及 SIN 调节的这一方面如何微调胞质分裂。