Suppr超能文献

细胞分裂与细胞周期的分割:裂殖酵母作为细胞分裂研究的模型。

Dividing the spoils of growth and the cell cycle: The fission yeast as a model for the study of cytokinesis.

机构信息

EPFL SV ISREC UPSIM, SV2.1830, Station 19, CH 1015 Lausanne, Switzerland.

出版信息

Cytoskeleton (Hoboken). 2011 Feb;68(2):69-88. doi: 10.1002/cm.20500.

Abstract

Cytokinesis is the final stage of the cell cycle, and ensures completion of both genome segregation and organelle distribution to the daughter cells. Cytokinesis requires the cell to solve a spatial problem (to divide in the correct place, orthogonally to the plane of chromosome segregation) and a temporal problem (to coordinate cytokinesis with mitosis). Defects in the spatiotemporal control of cytokinesis may cause cell death, or increase the risk of tumor formation [Fujiwara et al., 2005 (Fujiwara T, Bandi M, Nitta M, Ivanova EV, Bronson RT, Pellman D. 2005. Cytokinesis failure generating tetraploids promotes tumorigenesis in p53-null cells. Nature 437:1043–1047); reviewed by Ganem et al., 2007 (Ganem NJ, Storchova Z, Pellman D. 2007. Tetraploidy, aneuploidy and cancer. Curr Opin Genet Dev 17:157–162.)]. Asymmetric cytokinesis, which permits the generation of two daughter cells that differ in their shape, size and properties, is important both during development, and for cellular homeostasis in multicellular organisms [reviewed by Li, 2007 (Li R. 2007. Cytokinesis in development and disease: variations on a common theme. Cell Mol Life Sci 64:3044–3058)]. The principal focus of this review will be the mechanisms of cytokinesis in the mitotic cycle of the yeast Schizosaccharomyces pombe. This simple model has contributed significantly to our understanding of how the cell cycle is regulated, and serves as an excellent model for studying aspects of cytokinesis. Here we will discuss the state of our knowledge of how the contractile ring is assembled and disassembled, how it contracts, and what we know of the regulatory mechanisms that control these events and assure their coordination with chromosome segregation.

摘要

胞质分裂是细胞周期的最后一个阶段,确保了基因组分离和细胞器分配到子细胞的完成。胞质分裂需要细胞解决空间问题(在正确的位置分裂,垂直于染色体分离平面)和时间问题(协调胞质分裂与有丝分裂)。胞质分裂时空控制的缺陷可能导致细胞死亡,或增加肿瘤形成的风险[Fujiwara 等人,2005(Fujiwara T,Bandi M,Nitta M,Ivanova EV,Bronson RT,Pellman D. 2005. 胞质分裂失败导致四倍体产生,增加 p53 缺失细胞的肿瘤形成风险。自然 437:1043–1047);综述见 Ganem 等人,2007(Ganem NJ,Storchova Z,Pellman D. 2007. 四倍体、非整倍体和癌症。Curr Opin Genet Dev 17:157–162)]。不对称的胞质分裂,使两个子细胞在形状、大小和性质上有所不同,这在发育过程中以及在多细胞生物的细胞内稳态中都很重要[Li,2007(Li R. 2007. 有丝分裂周期中的胞质分裂在发育和疾病中的作用:共同主题的变化。细胞 Mol Life Sci 64:3044–3058)]。本综述的主要重点将是酿酒酵母裂殖酵母有丝分裂周期中胞质分裂的机制。这个简单的模型极大地促进了我们对细胞周期如何调控的理解,并为研究胞质分裂的各个方面提供了一个极好的模型。在这里,我们将讨论我们对收缩环如何组装和拆卸、如何收缩以及控制这些事件的调节机制的了解,这些机制保证了它们与染色体分离的协调。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7b0b/3044818/6159e448340e/cm0068-0069-f1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验