Department of Biomedical Engineering, Washington University in Saint Louis, Missouri, USA.
Am J Physiol Heart Circ Physiol. 2012 Sep 15;303(6):H712-20. doi: 10.1152/ajpheart.00269.2012. Epub 2012 Jul 13.
Cardiovascular disease often manifests as a combination of pathological electrical and structural heart remodeling. The relationship between mechanics and electrophysiology is crucial to our understanding of mechanisms of cardiac arrhythmias and the treatment of cardiac disease. While several technologies exist for describing whole heart electrophysiology, studies of cardiac mechanics are often limited to rhythmic patterns or small sections of tissue. Here, we present a comprehensive system based on ultrafast three-dimensional (3-D) structured light imaging to map surface dynamics of whole heart cardiac motion. Additionally, we introduce a novel nonrigid motion-tracking algorithm based on an isometry-maximizing optimization framework that forms correspondences between consecutive 3-D frames without the use of any fiducial markers. By combining our 3-D imaging system with nonrigid surface registration, we are able to measure cardiac surface mechanics at unprecedented spatial and temporal resolution. In conclusion, we demonstrate accurate cardiac deformation at over 200,000 surface points of a rabbit heart recorded at 200 frames/s and validate our results on highly contrasting heart motions during normal sinus rhythm, ventricular pacing, and ventricular fibrillation.
心血管疾病通常表现为病理性电和心脏结构重构的组合。力学和电生理学之间的关系对于我们理解心律失常机制和心脏疾病的治疗至关重要。虽然有几种技术可用于描述整个心脏电生理学,但心脏力学的研究通常仅限于有节奏的模式或组织的小部分。在这里,我们提出了一个基于超快三维(3-D)结构光成像的综合系统,用于绘制整个心脏运动的表面动力学。此外,我们引入了一种新颖的非刚性运动跟踪算法,该算法基于等距最大化优化框架,在不使用任何基准标记的情况下在连续的 3-D 帧之间形成对应关系。通过将我们的 3-D 成像系统与非刚性表面配准相结合,我们能够以前所未有的时空分辨率测量心脏表面力学。总之,我们展示了在 200 帧/秒的速度下对一只兔子心脏的超过 200,000 个表面点进行的精确心脏变形,并在正常窦性节律、心室起搏和心室颤动期间的高度对比心脏运动的验证结果。