Suppr超能文献

利用转录调控网络信息可解释机器学习预测适应性。

Predicting fitness in with transcriptional regulatory network-informed interpretable machine learning.

作者信息

Bustad Ethan, Petry Edson, Gu Oliver, Griebel Braden T, Rustad Tige R, Sherman David R, Yang Jason H, Ma Shuyi

机构信息

Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, WA, United States.

Center for Emerging and Re-Emerging Pathogens, Rutgers New Jersey Medical School, Newark, NJ, United States.

出版信息

Front Tuberc. 2025;3. doi: 10.3389/ftubr.2025.1500899. Epub 2025 Apr 2.

Abstract

INTRODUCTION

(Mtb) is the causative agent of tuberculosis disease, the greatest source of global mortality by a bacterial pathogen. Mtb adapts and responds to diverse stresses, such as antibiotics, by inducing transcriptional stress response regulatory programs. Understanding how and when mycobacterial regulatory programs are activated could inform novel treatment strategies that hinder stress adaptation and potentiate the efficacy of new and existing drugs. Here, we sought to define and analyze Mtb regulatory programs that modulate bacterial fitness under stress.

METHODS

We assembled a large Mtb RNA expression compendium and applied this to infer a comprehensive Mtb transcriptional regulatory network and compute condition-specific transcription factor activity (TFA) profiles. Using transcriptomic and functional genomics data, we trained an interpretable machine learning model that predicts Mtb fitness from TFA profiles.

RESULTS

We demonstrated that a TFA-based model can predict Mtb growth arrest and growth resumption under hypoxia and reaeration using gene expression data alone. This model also directly elucidates the transcriptional programs driving these growth phenotypes.

DISCUSSION

These integrative network modeling and machine learning analyses enable the prediction of mycobacterial fitness across different environmental and genetic contexts with mechanistic detail. We envision these models can inform the future design of prognostic assays and therapeutic interventions that can cripple Mtb growth and survival to cure tuberculosis disease.

摘要

引言

结核分枝杆菌(Mtb)是结核病的病原体,是细菌性病原体导致全球死亡的最大来源。Mtb通过诱导转录应激反应调控程序来适应和应对各种应激,如抗生素。了解分枝杆菌调控程序如何以及何时被激活,可为阻碍应激适应并增强新老药物疗效的新型治疗策略提供依据。在此,我们试图定义和分析在应激条件下调节细菌适应性的Mtb调控程序。

方法

我们汇编了一个大型的Mtb RNA表达汇编,并将其用于推断一个全面的Mtb转录调控网络,并计算特定条件下的转录因子活性(TFA)谱。利用转录组学和功能基因组学数据,我们训练了一个可解释的机器学习模型,该模型可根据TFA谱预测Mtb适应性。

结果

我们证明,仅使用基因表达数据,基于TFA的模型就能预测Mtb在缺氧和复氧条件下的生长停滞和生长恢复。该模型还直接阐明了驱动这些生长表型的转录程序。

讨论

这些综合的网络建模和机器学习分析能够在不同环境和遗传背景下,以机制细节预测分枝杆菌的适应性。我们设想这些模型可为未来预后检测和治疗干预的设计提供依据,从而抑制Mtb的生长和存活以治愈结核病。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1433/12269550/98300e7f92b1/nihms-2089678-f0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验