Department of Medicine, Division of Pulmonary and Critical Care Medicine, the University of Texas Health Science Center at San Antonio, San Antonio, TX.
Department of Medicine, Division of Pulmonary and Critical Care Medicine, the University of Texas Health Science Center at San Antonio, San Antonio, TX; Veterans Evidence Based Research Dissemination and Implementation Center (VERDICT), Audie L. Murphy VA Hospital, San Antonio, TX.
Chest. 2012 Jul;142(1):231-238. doi: 10.1378/chest.11-2420.
Ventilator-associated pneumonia (VAP) is associated with high morbidity, mortality, and costs. Interventions to prevent VAP are a high priority in the care of critically ill patients requiring mechanical ventilation (MV). Multiple interventions are recommended by evidence-based practice guidelines to prevent VAP, but there is a growing interest in those related to the endotracheal tube (ETT) as the main target linked to VAP. Microaspiration and biofilm formation are the two most important mechanisms implicated in the colonization of the tracheal bronchial tree and the development of VAP. Microaspiration occurs when there is distal migration of microorganisms present in the secretions accumulated above the ETT cuff. Biofilm formation has been described as the development of a network of secretions and attached microorganisms that migrate along the ETT cuff polymer and inside the lumen, facilitating the transfer to the sterile bronchial tree. Therefore, our objective was to review the literature related to recent advances in ETT technologies regarding their impact on the control of microaspiration and biofilm formation in patients on MV, and the subsequent impact on VAP.
呼吸机相关性肺炎(VAP)与高发病率、高死亡率和高成本相关。对于需要机械通气(MV)的危重症患者,预防 VAP 的干预措施是护理的重中之重。循证实践指南推荐了多种预防 VAP 的干预措施,但越来越关注与气管内导管(ETT)相关的干预措施,因为 ETT 是与 VAP 相关的主要目标。微吸入和生物膜形成是与气管支气管树定植和 VAP 发展相关的两个最重要的机制。当积聚在 ETT 袖套上方的分泌物中存在的微生物向远端迁移时,就会发生微吸入。生物膜形成被描述为分泌物和附着微生物的网络的发展,这些分泌物和附着微生物沿着 ETT 袖套聚合物和管腔迁移,促进向无菌支气管树的转移。因此,我们的目的是回顾与 ETT 技术相关的最新进展的文献,这些进展涉及它们对 MV 患者微吸入和生物膜形成控制的影响,以及随后对 VAP 的影响。