Suppr超能文献

钠钾-ATP 酶催化亚基的 S-谷胱甘肽化是决定酶氧化还原敏感性的因素。

S-glutathionylation of the Na,K-ATPase catalytic α subunit is a determinant of the enzyme redox sensitivity.

机构信息

Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 11999 Moscow, Russia.

出版信息

J Biol Chem. 2012 Sep 14;287(38):32195-205. doi: 10.1074/jbc.M112.391094. Epub 2012 Jul 13.

Abstract

Na,K-ATPase is highly sensitive to changes in the redox state, and yet the mechanisms of its redox sensitivity remain unclear. We have explored the possible involvement of S-glutathionylation of the catalytic α subunit in redox-induced responses. For the first time, the presence of S-glutathionylated cysteine residues was shown in the α subunit in duck salt glands, rabbit kidneys, and rat myocardium. Exposure of the Na,K-ATPase to oxidized glutathione (GSSG) resulted in an increase in the number of S-glutathionylated cysteine residues. Increase in S-glutathionylation was associated with dose- and time-dependent suppression of the enzyme function up to its complete inhibition. The enzyme inhibition concurred with S-glutathionylation of the Cys-454, -458, -459, and -244. Upon binding of glutathione to these cysteines, the enzyme was unable to interact with adenine nucleotides. Inhibition of the Na,K-ATPase by GSSG did not occur in the presence of ATP at concentrations above 0.5 mm. Deglutathionylation of the α subunit catalyzed by glutaredoxin or dithiothreitol resulted in restoration of the Na,K-ATPase activity. Oxidation of regulatory cysteines made them inaccessible for glutathionylation but had no profound effect on the enzyme activity. Regulatory S-glutathionylation of the α subunit was induced in rat myocardium in response to hypoxia and was associated with oxidative stress and ATP depletion. S-Glutathionylation was followed by suppression of the Na,K-ATPase activity. The rat α2 isoform was more sensitive to GSSG than the α1 isoform. Our findings imply that regulatory S-glutathionylation of the catalytic subunit plays a key role in the redox-induced regulation of Na,K-ATPase activity.

摘要

钠钾-ATP 酶对氧化还原状态的变化高度敏感,但其氧化还原敏感性的机制仍不清楚。我们探索了催化α亚基的 S-谷胱甘肽化在氧化还原诱导反应中的可能参与。首次表明,鸭盐腺、兔肾和鼠心肌中的α亚基存在 S-谷胱甘肽化半胱氨酸残基。将 Na,K-ATP 酶暴露于氧化型谷胱甘肽 (GSSG) 会导致 S-谷胱甘肽化半胱氨酸残基数量增加。S-谷胱甘肽化的增加与酶功能的剂量和时间依赖性抑制有关,直至完全抑制。酶抑制与 Cys-454、-458、-459 和 -244 的 S-谷胱甘肽化有关。当谷胱甘肽与这些半胱氨酸结合时,酶就无法与腺嘌呤核苷酸相互作用。在浓度高于 0.5 mM 的 ATP 存在下,GSSG 不会抑制 Na,K-ATP 酶。由谷氧还蛋白或二硫苏糖醇催化的α亚基脱谷胱甘肽化导致 Na,K-ATP 酶活性恢复。氧化调节半胱氨酸使它们无法进行谷胱甘肽化,但对酶活性没有深远影响。α 亚基的调节性 S-谷胱甘肽化在大鼠心肌中响应缺氧而诱导,并与氧化应激和 ATP 耗竭有关。S-谷胱甘肽化后,Na,K-ATP 酶活性受到抑制。大鼠α2 同工型比α1 同工型对 GSSG 更敏感。我们的发现表明,催化亚基的调节性 S-谷胱甘肽化在氧化还原诱导的 Na,K-ATP 酶活性调节中起着关键作用。

相似文献

1
S-glutathionylation of the Na,K-ATPase catalytic α subunit is a determinant of the enzyme redox sensitivity.
J Biol Chem. 2012 Sep 14;287(38):32195-205. doi: 10.1074/jbc.M112.391094. Epub 2012 Jul 13.
2
Cross talk between S-nitrosylation and S-glutathionylation in control of the Na,K-ATPase regulation in hypoxic heart.
Am J Physiol Heart Circ Physiol. 2012 Dec 1;303(11):H1332-43. doi: 10.1152/ajpheart.00145.2012. Epub 2012 Sep 14.
3
Glutathionylation of Na,K-ATPase Alpha-Subunit Alters Enzyme Conformation and Sensitivity to Trypsinolysis.
Biochemistry (Mosc). 2018 Aug;83(8):969-981. doi: 10.1134/S0006297918080084.
5
6
Basal Glutathionylation of Na,K-ATPase α-Subunit Depends on Redox Status of Cells during the Enzyme Biosynthesis.
Oxid Med Cell Longev. 2016;2016:9092328. doi: 10.1155/2016/9092328. Epub 2016 Apr 27.
7
Na,K-ATPase α-subunit conformation determines glutathionylation efficiency.
Biochem Biophys Res Commun. 2019 Feb 26;510(1):86-90. doi: 10.1016/j.bbrc.2019.01.052. Epub 2019 Jan 17.
10
Oxidative stress (glutathionylation) and Na,K-ATPase activity in rat skeletal muscle.
PLoS One. 2014 Oct 13;9(10):e110514. doi: 10.1371/journal.pone.0110514. eCollection 2014.

引用本文的文献

1
Oxidative Stress in the Regulation of Autosis-Related Proteins.
Antioxidants (Basel). 2025 Aug 4;14(8):958. doi: 10.3390/antiox14080958.
3
Mechanisms mediating effects of cardiotonic steroids in mammalian blood cells.
Front Pharmacol. 2025 Mar 24;16:1520927. doi: 10.3389/fphar.2025.1520927. eCollection 2025.
4
Ameliorative effects of Edaravone against Valproic Acid-Induced kidney damage.
J Mol Histol. 2024 Nov 27;56(1):4. doi: 10.1007/s10735-024-10291-5.
6
Interplay between the Redox System and Renal Tubular Transport.
Antioxidants (Basel). 2024 Sep 24;13(10):1156. doi: 10.3390/antiox13101156.
7
The Role of S-Glutathionylation in Health and Disease: A Bird's Eye View.
Nutrients. 2024 Aug 18;16(16):2753. doi: 10.3390/nu16162753.
8
Disulfide stress and its role in cardiovascular diseases.
Redox Biol. 2024 Sep;75:103297. doi: 10.1016/j.redox.2024.103297. Epub 2024 Aug 3.
9
Na/K-ATPase: More than an Electrogenic Pump.
Int J Mol Sci. 2024 Jun 1;25(11):6122. doi: 10.3390/ijms25116122.
10
Hypoxia and HIF-1α Regulate the Activity and Expression of Na,K-ATPase Subunits in H9c2 Cardiomyoblasts.
Curr Issues Mol Biol. 2023 Oct 12;45(10):8277-8288. doi: 10.3390/cimb45100522.

本文引用的文献

1
FXYD proteins reverse inhibition of the Na+-K+ pump mediated by glutathionylation of its beta1 subunit.
J Biol Chem. 2011 May 27;286(21):18562-72. doi: 10.1074/jbc.M110.184101. Epub 2011 Mar 30.
2
Interventricular heterogeneity in rat heart responses to hypoxia: the tuning of glucose metabolism, ion gradients, and function.
Am J Physiol Heart Circ Physiol. 2011 May;300(5):H1645-52. doi: 10.1152/ajpheart.00220.2010. Epub 2011 Mar 11.
3
Reversible oxidative modification: implications for cardiovascular physiology and pathophysiology.
Trends Cardiovasc Med. 2010 Apr;20(3):85-90. doi: 10.1016/j.tcm.2010.06.002.
4
Reversible oxidative modification: a key mechanism of Na+-K+ pump regulation.
Circ Res. 2009 Jul 17;105(2):185-93. doi: 10.1161/CIRCRESAHA.109.199547. Epub 2009 Jun 18.
5
Nitroxyl activates SERCA in cardiac myocytes via glutathiolation of cysteine 674.
Circ Res. 2009 Mar 27;104(6):720-3. doi: 10.1161/CIRCRESAHA.108.188441. Epub 2009 Mar 5.
6
ATP and magnesium drive conformational changes of the Na+/K+-ATPase cytoplasmic headpiece.
Biochim Biophys Acta. 2009 May;1788(5):1081-91. doi: 10.1016/j.bbamem.2009.02.004. Epub 2009 Feb 20.
7
Molecular mechanisms and clinical implications of reversible protein S-glutathionylation.
Antioxid Redox Signal. 2008 Nov;10(11):1941-88. doi: 10.1089/ars.2008.2089.
8
Functional roles of Na,K-ATPase subunits.
Curr Opin Nephrol Hypertens. 2008 Sep;17(5):526-32. doi: 10.1097/MNH.0b013e3283036cbf.
9
Altered Na+/Ca2+-exchanger activity due to downregulation of Na+/K+-ATPase alpha2-isoform in heart failure.
Cardiovasc Res. 2008 Apr 1;78(1):71-8. doi: 10.1093/cvr/cvn013. Epub 2008 Jan 17.
10
Crystal structure of the sodium-potassium pump.
Nature. 2007 Dec 13;450(7172):1043-9. doi: 10.1038/nature06419.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验