Institut Néel, CNRS et UJF, 25 Avenue des Martyrs, 38042 Grenoble Cedex 09, France.
J Chem Phys. 2012 Jul 14;137(2):024505. doi: 10.1063/1.4733333.
The thermodynamic treatment of the glass transition remains an issue of intense debate. When associated with the formalism of non-equilibrium thermodynamics, the lattice-hole theory of liquids can provide new insight in this direction, as has been shown by Schmelzer and Gutzow [J. Chem. Phys. 125, 184511 (2006)], by Möller et al. [J. Chem. Phys. 125, 094505 (2006)], and more recently by Tropin et al. [J. Non-Cryst. Solids 357, 1291 (2011); ibid. 357, 1303 (2011)]. Here, we employ a similar approach. We include pressure as an additional variable, in order to account for the freezing-in of structural degrees of freedom upon pressure increase. Second, we demonstrate that important terms concerning first order derivatives of the affinity-driving-force with respect to temperature and pressure have been previously neglected. We show that these are of crucial importance in the approach. Macroscopic non-equilibrium thermodynamics is used to enlighten these contributions in the derivation of C(p),κ(T), and α(p). The coefficients are calculated as a function of pressure and temperature following different theoretical protocols, revealing classical aspects of vitrification and structural recovery processes. Finally, we demonstrate that a simple minimalist model such as the lattice-hole theory of liquids, when being associated with rigorous use of macroscopic non-equilibrium thermodynamics, is able to account for the primary features of the glass transition phenomenology. Notwithstanding its simplicity and its limits, this approach can be used as a very pedagogical tool to provide a physical understanding on the underlying thermodynamics which governs the glass transition process.
玻璃化转变的热力学处理仍然是一个激烈争论的问题。当与非平衡热力学的形式主义相关联时,液体的晶格空穴理论可以为这一方向提供新的见解,正如 Schmelzer 和 Gutzow [J. Chem. Phys. 125, 184511 (2006)]、Möller 等人 [J. Chem. Phys. 125, 094505 (2006)],以及最近的 Tropin 等人 [J. Non-Cryst. Solids 357, 1291 (2011); ibid. 357, 1303 (2011)]所表明的那样。在这里,我们采用类似的方法。我们将压力作为一个附加变量,以便在压力增加时考虑结构自由度的冻结。其次,我们证明以前忽略了与温度和压力有关的亲和力驱动力的一阶导数的重要项。我们表明,这些在该方法中是至关重要的。宏观非平衡热力学用于阐明这些在推导 C(p)、κ(T)和α(p)中的贡献。根据不同的理论方案,系数作为压力和温度的函数进行计算,揭示了玻璃化和结构恢复过程的经典方面。最后,我们证明,当将液体的晶格空穴理论与宏观非平衡热力学的严格使用相结合时,即使是像液体的晶格空穴理论这样的简单最小模型,也能够解释玻璃化转变现象学的主要特征。尽管它很简单,也有其局限性,但这种方法可以用作一个非常有教育意义的工具,提供对控制玻璃化转变过程的热力学的物理理解。