Department of Pediatrics, The University of Chicago, KCBD 4124, 900 E 57th Street, Chicago, IL 60637, USA.
Eur J Neurosci. 2012 Jul;36(2):2121-36. doi: 10.1111/j.1460-9568.2012.08083.x.
Unraveling the mechanisms underlying oscillatory behavior is critical for understanding normal and pathological brain processes. Here we used electrophysiology in mouse neocortical slices and principles of nonlinear dynamics to demonstrate how an increase in the N-methyl-d-aspartic acid receptor (NMDAR) conductance can create a nonlinear whole-cell current-voltage (I-V) relationship which leads to changes in cellular stability. We discovered two behaviorally and morphologically distinct pyramidal cell populations. Under control conditions, both cell types responded to depolarizing current injection with regular spiking patterns. However, upon NMDAR activation, an intrinsic oscillatory (IO) cell type (n = 44) showed a nonlinear whole-cell I-V relationship, intrinsic voltage-dependent oscillations plus amplification of alternating input current, and these properties persisted after disabling action potential generation with tetrodotoxin (TTX). The other non-oscillatory (NO) neuronal population (n = 24) demonstrated none of these behaviors. Simultaneous intra- and extracellular recordings demonstrated the NMDAR's capacity to promote low-frequency seizure-like network oscillations via its effects on intrinsic neuronal properties. The two pyramidal cell types demonstrated different relationships with network oscillation--the IO cells were leaders that were activated early in the population activity cycle while the activation of the NO cell type was distributed across network bursts. The properties of IO neurons disappeared in a low-magnesium environment where the voltage dependence of the receptor is abolished; concurrently, the cellular contribution to network oscillation switched to synchronous firing. Thus, depending upon the efficacy of NMDAR in altering the linearity of the whole-cell I-V relationship, the two cell populations played different roles in sustaining network oscillation.
揭示振荡行为的机制对于理解正常和病理脑过程至关重要。在这里,我们使用电生理学在小鼠新皮层切片和非线性动力学原理来证明 N-甲基-D-天冬氨酸受体(NMDAR)电导的增加如何产生导致细胞稳定性变化的非线性全细胞电流-电压(I-V)关系。我们发现了两种具有不同行为和形态的锥体神经元群体。在对照条件下,两种细胞类型都对去极化电流注入表现出规则的放电模式。然而,在 NMDAR 激活后,一种内在的振荡(IO)细胞类型(n = 44)表现出非线性的全细胞 I-V 关系,内在的电压依赖性振荡加上交替输入电流的放大,并且这些特性在使用四氢生物蝶呤(TTX)禁用动作电位产生后仍然存在。另一种非振荡(NO)神经元群体(n = 24)则没有表现出这些行为。同时进行的细胞内和细胞外记录表明,NMDAR 通过其对内在神经元特性的影响,具有促进低频癫痫样网络振荡的能力。这两种锥体神经元类型与网络振荡表现出不同的关系——IO 细胞是在群体活动周期早期被激活的领导者,而 NO 细胞类型的激活则分布在网络爆发中。在 NMDAR 降低了受体的电压依赖性的低镁环境中,IO 神经元的特性消失;同时,细胞对网络振荡的贡献转变为同步放电。因此,取决于 NMDAR 改变全细胞 I-V 关系的线性度的效果,这两种细胞群体在维持网络振荡中发挥不同的作用。