Suppr超能文献

一种用于单臂探索性临床试验的贝叶斯预测性样本量选择设计。

A Bayesian predictive sample size selection design for single-arm exploratory clinical trials.

机构信息

Department of Clinical Trial Design and Management, Translational Research Center, Kyoto University Hospital, Kyoto, Japan.

出版信息

Stat Med. 2012 Dec 30;31(30):4243-54. doi: 10.1002/sim.5505. Epub 2012 Jul 16.

Abstract

The aim of an exploratory clinical trial is to determine whether a new intervention is promising for further testing in confirmatory clinical trials. Most exploratory clinical trials are designed as single-arm trials using a binary outcome with or without interim monitoring for early stopping. In this context, we propose a Bayesian adaptive design denoted as predictive sample size selection design (PSSD). The design allows for sample size selection following any planned interim analyses for early stopping of a trial, together with sample size determination before starting the trial. In the PSSD, we determine the sample size using the method proposed by Sambucini (Statistics in Medicine 2008; 27:1199-1224), which adopts a predictive probability criterion with two kinds of prior distributions, that is, an 'analysis prior' used to compute posterior probabilities and a 'design prior' used to obtain prior predictive distributions. In the sample size determination of the PSSD, we provide two sample sizes, that is, N and N(max) , using two types of design priors. At each interim analysis, we calculate the predictive probabilities of achieving a successful result at the end of the trial using the analysis prior in order to stop the trial in case of low or high efficacy (Lee et al., Clinical Trials 2008; 5:93-106), and we select an optimal sample size, that is, either N or N(max) as needed, on the basis of the predictive probabilities. We investigate the operating characteristics through simulation studies, and the PSSD retrospectively applies to a lung cancer clinical trial. (243)

摘要

探索性临床试验的目的是确定新干预措施是否有希望在确证性临床试验中进一步测试。大多数探索性临床试验都是采用二分类结局的单臂试验设计,并在有或没有中期监测的情况下进行早期停止的设计。在这种情况下,我们提出了一种贝叶斯自适应设计,称为预测样本量选择设计(PSSD)。该设计允许在试验的任何计划中期分析进行早期停止后选择样本量,同时在开始试验前确定样本量。在 PSSD 中,我们使用 Sambucini 提出的方法(Statistics in Medicine 2008; 27:1199-1224)来确定样本量,该方法采用了具有两种先验分布的预测概率准则,即用于计算后验概率的“分析先验”和用于获得先验预测分布的“设计先验”。在 PSSD 的样本量确定中,我们使用两种设计先验提供了两种样本量,即 N 和 N(max)。在每次中期分析中,我们使用分析先验计算试验结束时获得成功结果的预测概率,以便在疗效低或高的情况下停止试验(Lee 等人,Clinical Trials 2008; 5:93-106),并根据预测概率选择最佳样本量,即 N 或 N(max) 中的一种。我们通过模拟研究来研究操作特性,并且 PSSD 回顾性地应用于一项肺癌临床试验。(243)

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验