Suppr超能文献

基于空间先验和高度欠采样外周 K 空间的 CSI 中的脂质抑制。

Lipid suppression in CSI with spatial priors and highly undersampled peripheral k-space.

机构信息

Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA.

出版信息

Magn Reson Med. 2013 Jun;69(6):1501-11. doi: 10.1002/mrm.24399. Epub 2012 Jul 17.

Abstract

Mapping 1H brain metabolites using chemical shift imaging is hampered by the presence of subcutaneous lipid signals, which contaminate the metabolites by ringing due to limited spatial resolution. Even though chemical shift imaging at spatial resolution high enough to mitigate the lipid artifacts is infeasible due to signal-to-noise constraints on the metabolites, the lipid signals have orders of magnitude of higher concentration, which enables the collection of high-resolution lipid maps with adequate signal-to-noise. The previously proposed dual-density approach exploits this high signal-to-noise property of the lipid layer to suppress truncation artifacts using high-resolution lipid maps. Another recent approach for lipid suppression makes use of the fact that metabolite and lipid spectra are approximately orthogonal, and seeks sparse metabolite spectra when projected onto lipid-basis functions. This work combines and extends the dual-density approach and the lipid-basis penalty, while estimating the high-resolution lipid image from 2-average k-space data to incur minimal increase on the scan time. Further, we exploit the spectral-spatial sparsity of the lipid ring and propose to estimate it from substantially undersampled (acceleration R=10 in the peripheral k-space) 2-average in vivo data using compressed sensing and still obtain improved lipid suppression relative to using dual-density or lipid-basis penalty alone.

摘要

使用化学位移成象对 1H 脑代谢物进行映射受到皮下脂质信号的干扰,由于代谢物的空间分辨率有限,这些脂质信号会产生振铃伪影而污染代谢物。尽管由于代谢物的信噪比限制,高到足以减轻脂质伪影的空间分辨率的化学位移成象是不可行的,但脂质信号的浓度要高出几个数量级,这使得能够用足够的信噪比来采集高分辨率的脂质图谱。先前提出的双重密度方法利用脂质层的高信噪比特性,通过高分辨率脂质图谱来抑制截断伪影。另一种最近的用于脂质抑制的方法利用了代谢物和脂质谱近似正交的事实,并在投影到脂质基函数时寻找稀疏的代谢物谱。这项工作结合并扩展了双重密度方法和脂质基罚函数,同时从 2 平均 k 空间数据估计高分辨率脂质图像,以最小化扫描时间的增加。此外,我们利用脂质环的谱-空间稀疏性,并提出从使用压缩感知的大幅欠采样(外周 k 空间中的加速比 R=10)的体内 2 平均数据中估计它,并相对于单独使用双重密度或脂质基罚函数仍然获得更好的脂质抑制效果。

相似文献

6
Improved reconstruction for MR spectroscopic imaging.磁共振波谱成像的改进重建
IEEE Trans Med Imaging. 2007 May;26(5):686-95. doi: 10.1109/TMI.2007.895482.

引用本文的文献

3
High-quality lipid suppression and B0 shimming for human brain H MRSI.高质量的脂质抑制和 B0 匀场用于人脑 H MRSI。
Neuroimage. 2024 Oct 15;300:120845. doi: 10.1016/j.neuroimage.2024.120845. Epub 2024 Sep 12.

本文引用的文献

10
Reduced spatial side lobes in chemical-shift imaging.化学位移成像中空间旁瓣的减少
Magn Reson Med. 1999 Aug;42(2):314-23. doi: 10.1002/(sici)1522-2594(199908)42:2<314::aid-mrm14>3.0.co;2-x.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验