Department of Civil Engineering, North Dakota State University, Fargo, North Dakota 58108, United States.
Biomacromolecules. 2012 Aug 13;13(8):2562-9. doi: 10.1021/bm300801a. Epub 2012 Jul 31.
The structure of collagen, the most abundant protein in mammals, consists of a triple helix composed of three helical polypeptide chains. The deformation behavior of collagen is governed by molecular mechanisms that involve the interaction between different helical hierarchies found in collagen. Here, we report results of Steered Molecular Dynamics study of the full-length collagen molecule (~290 nm). The collagen molecule is extended at various pulling rates ranging from 0.00003/ps to 0.012/ps. These simulations reveal a new level of hierarchy exhibited by collagen: helicity of the triple chain. This level of hierarchy is apparent at the 290 nm length and cannot be observed in the 7-9 nm models often described to evaluate collagen mechanics. The deformation mechanisms in collagen are governed by all three levels of hierarchy, helicity of single chain (level-1), helical triple helix (level-2), and hereby described helicity of the triple chain (level-3). The mechanics resulting from the three levels is described by an interlocking gear analogy. In addition, remarkably, the full-length collagen does not show much unwinding of triple helix unlike that exhibited by short collagen models. Further, the full-length collagen does not show significant unwinding of the triple helix, unlike that exhibited by short collagen. Also reported is that the interchain hydrogen bond energy in the full-length collagen is significantly smaller than the overall interchain nonbonded interaction energies, suggesting that the nonbonded interactions have far more important role than hydrogen bonds in the mechanics of collagen. However, hydrogen bonding is essential for the triple helical conformation of the collagen. Hence, although mechanics of collagen is controlled by nonbonded interchain interaction energies, the confirmation of collagen is attributed to the interchain hydrogen bonding.
胶原蛋白的结构由三条螺旋多肽链组成的三螺旋组成,是哺乳动物中最丰富的蛋白质。胶原蛋白的变形行为受分子机制控制,这些机制涉及胶原蛋白中不同螺旋层次之间的相互作用。在这里,我们报告了对全长胶原蛋白分子(约 290nm)进行导向分子动力学研究的结果。胶原蛋白分子在各种拉伸速率下被拉伸,拉伸速率范围从 0.00003/ps 到 0.012/ps。这些模拟揭示了胶原蛋白表现出的新层次结构:三链螺旋的螺旋性。这种层次结构在 290nm 的长度上是明显的,而在经常用来评估胶原蛋白力学性能的 7-9nm 模型中是无法观察到的。胶原蛋白中的变形机制受三个层次的结构控制,包括单链螺旋性(一级结构)、三螺旋螺旋性(二级结构)以及本文所述的三链螺旋性(三级结构)。由这三个层次产生的力学由互锁齿轮类比来描述。此外,值得注意的是,全长胶原蛋白与短胶原模型不同,其三螺旋几乎没有明显的解旋。此外,全长胶原蛋白与短胶原模型不同,其三螺旋没有明显的解旋。此外,报告还指出,全长胶原蛋白中的链间氢键能明显小于整体链间非键相互作用能,这表明非键相互作用在胶原蛋白力学中比氢键更重要。然而,氢键对于胶原蛋白的三螺旋构象是必不可少的。因此,尽管胶原蛋白的力学受链间非键相互作用能的控制,但胶原蛋白的构象归因于链间氢键。