Suppr超能文献

解释细胞寿命和复制能力的差异:一个普遍模型和对脊椎动物的比较分析。

Explaining differences in the lifespan and replicative capacity of cells: a general model and comparative analysis of vertebrates.

机构信息

Department of Biology, University of Florida, Gainesville, FL 32611, USA.

出版信息

Proc Biol Sci. 2012 Oct 7;279(1744):3976-80. doi: 10.1098/rspb.2012.1129. Epub 2012 Jul 18.

Abstract

A better understanding of the factors that govern individual cell lifespan and the replicative capacity of cells (i.e. Hayflick's limit) is important for addressing disease progression and ageing. Estimates of cell lifespan in vivo and the replicative capacity of cell lines in culture vary substantially both within and across species, but the underlying reasons for this variability remain unclear. Here, we address this issue by presenting a quantitative model of cell lifespan and cell replicative capacity. The model is based on the relationship between cell mortality and metabolic rate, which is supported with data for different cell types from ectotherms and endotherms. These data indicate that much of the observed variation in cell lifespan and cell replicative capacity is explained by differences in cellular metabolic rate, and thus by the three primary factors that control metabolic rate: organism size, organism temperature and cell size. Individual cell lifespan increases as a power law with both body mass and cell mass, and decreases exponentially with increasing temperature. The replicative capacity of cells also increases with body mass, but is independent of temperature. These results provide a point of departure for future comparative studies of cell lifespan and replicative capacity in the laboratory and in the field.

摘要

更好地理解控制个体细胞寿命和细胞复制能力(即海弗利克极限)的因素对于解决疾病进展和衰老问题非常重要。体内细胞寿命的估计和培养细胞系的复制能力在种内和种间都有很大的差异,但这种差异的根本原因尚不清楚。在这里,我们通过提出一个细胞寿命和细胞复制能力的定量模型来解决这个问题。该模型基于细胞死亡率和代谢率之间的关系,该关系得到了来自变温动物和恒温动物的不同细胞类型的数据的支持。这些数据表明,细胞寿命和细胞复制能力的大部分观察到的变化可以用细胞代谢率的差异来解释,而代谢率又受到三个主要因素的控制:生物体大小、生物体温度和细胞大小。个体细胞寿命与体重和细胞质量呈幂律关系增加,并随温度的升高呈指数下降。细胞的复制能力也随体重增加而增加,但与温度无关。这些结果为未来在实验室和野外进行细胞寿命和复制能力的比较研究提供了一个起点。

相似文献

1
Explaining differences in the lifespan and replicative capacity of cells: a general model and comparative analysis of vertebrates.
Proc Biol Sci. 2012 Oct 7;279(1744):3976-80. doi: 10.1098/rspb.2012.1129. Epub 2012 Jul 18.
2
Body size, energy metabolism and lifespan.
J Exp Biol. 2005 May;208(Pt 9):1717-30. doi: 10.1242/jeb.01556.
3
Cell aging in vivo and in vitro.
Mech Ageing Dev. 1997 Oct;98(1):1-35. doi: 10.1016/s0047-6374(97)00067-5.
6
7
Body mass scaling of passive oxygen diffusion in endotherms and ectotherms.
Proc Natl Acad Sci U S A. 2016 May 10;113(19):5340-5. doi: 10.1073/pnas.1519617113. Epub 2016 Apr 26.
8
Latitudinal variation in lifespan within species is explained by the metabolic theory of ecology.
Proc Natl Acad Sci U S A. 2009 Aug 18;106(33):13860-4. doi: 10.1073/pnas.0900300106. Epub 2009 Jul 30.

引用本文的文献

1
Exploring bone-tumor interactions through 3D models: Implications for primary and metastatic cancers.
J Bone Oncol. 2025 Jun 17;53:100698. doi: 10.1016/j.jbo.2025.100698. eCollection 2025 Aug.
5
Navigating challenges: optimising methods for primary cell culture isolation.
Cancer Cell Int. 2024 Jan 11;24(1):28. doi: 10.1186/s12935-023-03190-4.
7
Longitudinal telomere dynamics within natural lifespans of a wild bird.
Sci Rep. 2023 Mar 15;13(1):4272. doi: 10.1038/s41598-023-31435-9.
8
Recent advances in biofabricated gut models to understand the gut-brain axis in neurological diseases.
Front Med Technol. 2022 Sep 14;4:931411. doi: 10.3389/fmedt.2022.931411. eCollection 2022.
10
From Donor to the Lab: A Fascinating Journey of Primary Cell Lines.
Front Cell Dev Biol. 2021 Jul 22;9:711381. doi: 10.3389/fcell.2021.711381. eCollection 2021.

本文引用的文献

1
Impact of cellular senescence signature on ageing research.
Ageing Res Rev. 2011 Jan;10(1):146-52. doi: 10.1016/j.arr.2010.10.002. Epub 2010 Oct 12.
2
Mitochondria, cellular stress resistance, somatic cell depletion and lifespan.
Curr Aging Sci. 2009 Mar;2(1):12-27. doi: 10.2174/1874609810902010012.
3
Dynamics of haemopoiesis across mammals.
Proc Biol Sci. 2008 Oct 22;275(1649):2389-92. doi: 10.1098/rspb.2008.0506.
4
Predicting natural mortality rates of plants and animals.
Ecol Lett. 2008 Jul;11(7):710-6. doi: 10.1111/j.1461-0248.2008.01190.x. Epub 2008 Apr 16.
5
Free radicals and senescence.
Exp Cell Res. 2008 Jun 10;314(9):1918-22. doi: 10.1016/j.yexcr.2008.01.011. Epub 2008 Jan 26.
6
Cell turnover and adult tissue homeostasis: from humans to planarians.
Annu Rev Genet. 2007;41:83-105. doi: 10.1146/annurev.genet.41.110306.130244.
7
Cellular senescence in cancer and aging.
Cell. 2007 Jul 27;130(2):223-33. doi: 10.1016/j.cell.2007.07.003.
8
Scaling of number, size, and metabolic rate of cells with body size in mammals.
Proc Natl Acad Sci U S A. 2007 Mar 13;104(11):4718-23. doi: 10.1073/pnas.0611235104. Epub 2007 Mar 1.
9
Metabolic rate does not scale with body mass in cultured mammalian cells.
Am J Physiol Regul Integr Comp Physiol. 2007 Jun;292(6):R2115-21. doi: 10.1152/ajpregu.00568.2006. Epub 2007 Jan 18.
10
The linear alometric relationship between total metabolic energy per life span and body mass of poikilothermic animals.
Biosystems. 2005 Nov;82(2):137-42. doi: 10.1016/j.biosystems.2005.06.006. Epub 2005 Aug 22.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验