Suppr超能文献

Automatic annotation of histopathological images using a latent topic model based on non-negative matrix factorization.

作者信息

Cruz-Roa Angel, Díaz Gloria, Romero Eduardo, González Fabio A

机构信息

BioIngenium Research Group, Faculty of Engineering and School of Medicine, Universidad Nacional de Colombia, Carrera 30 45-03 Ed 471 1er Piso, Bogotá D.C., 11001000, Colombia.

出版信息

J Pathol Inform. 2011;2:S4. doi: 10.4103/2153-3539.92031. Epub 2012 Jan 19.

Abstract

Histopathological images are an important resource for clinical diagnosis and biomedical research. From an image understanding point of view, the automatic annotation of these images is a challenging problem. This paper presents a new method for automatic histopathological image annotation based on three complementary strategies, first, a part-based image representation, called the bag of features, which takes advantage of the natural redundancy of histopathological images for capturing the fundamental patterns of biological structures, second, a latent topic model, based on non-negative matrix factorization, which captures the high-level visual patterns hidden in the image, and, third, a probabilistic annotation model that links visual appearance of morphological and architectural features associated to 10 histopathological image annotations. The method was evaluated using 1,604 annotated images of skin tissues, which included normal and pathological architectural and morphological features, obtaining a recall of 74% and a precision of 50%, which improved a baseline annotation method based on support vector machines in a 64% and 24%, respectively.

摘要
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/89ab/3312710/a1e1e783f7b5/JPI-2-4-g001.jpg

相似文献

2
Multilabel image annotation based on double-layer PLSA model.
ScientificWorldJournal. 2014;2014:494387. doi: 10.1155/2014/494387. Epub 2014 Jun 4.
3
Visual pattern mining in histology image collections using bag of features.
Artif Intell Med. 2011 Jun;52(2):91-106. doi: 10.1016/j.artmed.2011.04.010. Epub 2011 Jun 12.
4
Adapting content-based image retrieval techniques for the semantic annotation of medical images.
Comput Med Imaging Graph. 2016 Apr;49:37-45. doi: 10.1016/j.compmedimag.2016.01.001. Epub 2016 Feb 4.
5
Semantic sparse recoding of visual content for image applications.
IEEE Trans Image Process. 2015 Jan;24(1):176-88. doi: 10.1109/TIP.2014.2375641. Epub 2014 Nov 26.
6
Content-based histopathology image retrieval using a kernel-based semantic annotation framework.
J Biomed Inform. 2011 Aug;44(4):519-28. doi: 10.1016/j.jbi.2011.01.011. Epub 2011 Feb 3.
7
SNMFCA: supervised NMF-based image classification and annotation.
IEEE Trans Image Process. 2012 Nov;21(11):4508-21. doi: 10.1109/TIP.2012.2206040. Epub 2012 Jun 26.
8
Micro-structural tissue analysis for automatic histopathological image annotation.
Microsc Res Tech. 2012 Mar;75(3):343-58. doi: 10.1002/jemt.21063. Epub 2011 Oct 14.
9
Categorizing biomedicine images using novel image features and sparse coding representation.
BMC Med Genomics. 2013;6 Suppl 3(Suppl 3):S8. doi: 10.1186/1755-8794-6-S3-S8. Epub 2013 Nov 11.
10
A visual latent semantic approach for automatic analysis and interpretation of anaplastic medulloblastoma virtual slides.
Med Image Comput Comput Assist Interv. 2012;15(Pt 1):157-64. doi: 10.1007/978-3-642-33415-3_20.

本文引用的文献

1
Digital pathology image analysis: opportunities and challenges.
Imaging Med. 2009;1(1):7-10. doi: 10.2217/IIM.09.9.
2
Micro-structural tissue analysis for automatic histopathological image annotation.
Microsc Res Tech. 2012 Mar;75(3):343-58. doi: 10.1002/jemt.21063. Epub 2011 Oct 14.
3
Visual pattern mining in histology image collections using bag of features.
Artif Intell Med. 2011 Jun;52(2):91-106. doi: 10.1016/j.artmed.2011.04.010. Epub 2011 Jun 12.
4
Bisque: a platform for bioimage analysis and management.
Bioinformatics. 2010 Feb 15;26(4):544-52. doi: 10.1093/bioinformatics/btp699. Epub 2009 Dec 22.
5
Convex and semi-nonnegative matrix factorizations.
IEEE Trans Pattern Anal Mach Intell. 2010 Jan;32(1):45-55. doi: 10.1109/TPAMI.2008.277.
6
Bioimage informatics for experimental biology.
Annu Rev Biophys. 2009;38:327-46. doi: 10.1146/annurev.biophys.050708.133641.
7
Bioimage informatics: a new area of engineering biology.
Bioinformatics. 2008 Sep 1;24(17):1827-36. doi: 10.1093/bioinformatics/btn346. Epub 2008 Jul 4.
8
Genome-wide atlas of gene expression in the adult mouse brain.
Nature. 2007 Jan 11;445(7124):168-76. doi: 10.1038/nature05453. Epub 2006 Dec 6.
9
Learning the parts of objects by non-negative matrix factorization.
Nature. 1999 Oct 21;401(6755):788-91. doi: 10.1038/44565.
10
Recognition-by-components: a theory of human image understanding.
Psychol Rev. 1987 Apr;94(2):115-147. doi: 10.1037/0033-295X.94.2.115.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验