Suppr超能文献

使用改良的碳簇预测 Ca2+ 结合位点。

Predicting Ca2+ -binding sites using refined carbon clusters.

机构信息

Department of Mathematics and Statistics, Georgia State University, Atlanta, GA 30303, USA.

出版信息

Proteins. 2012 Dec;80(12):2666-79. doi: 10.1002/prot.24149. Epub 2012 Jul 31.

Abstract

Identifying Ca(2+) -binding sites in proteins is the first step toward understanding the molecular basis of diseases related to Ca(2+) -binding proteins. Currently, these sites are identified in structures either through X-ray crystallography or NMR analysis. However, Ca(2+) -binding sites are not always visible in X-ray structures due to flexibility in the binding region or low occupancy in a Ca(2+) -binding site. Similarly, both Ca(2+) and its ligand oxygens are not directly observed in NMR structures. To improve our ability to predict Ca(2+) -binding sites in both X-ray and NMR structures, we report a new graph theory algorithm (MUG(C) ) to predict Ca(2+) -binding sites. Using carbon atoms covalently bonded to the chelating oxygen atoms, and without explicit reference to side-chain oxygen ligand co-ordinates, MUG(C) is able to achieve 94% sensitivity with 76% selectivity on a dataset of X-ray structures composed of 43 Ca(2+) -binding proteins. Additionally, prediction of Ca(2+) -binding sites in NMR structures was obtained by MUG(C) using a different set of parameters, which were determined by the analysis of both Ca(2+) -constrained and unconstrained Ca(2+) -loaded structures derived from NMR data. MUG(C) identified 20 of 21 Ca(2+) -binding sites in NMR structures inferred without the use of Ca(2+) constraints. MUG(C) predictions are also highly selective for Ca(2+) -binding sites as analyses of binding sites for Mg(2+) , Zn(2+) , and Pb(2+) were not identified as Ca(2+) -binding sites. These results indicate that the geometric arrangement of the second-shell carbon cluster is sufficient not only for accurate identification of Ca(2+) -binding sites in NMR and X-ray structures but also for selective differentiation between Ca(2+) and other relevant divalent cations.

摘要

鉴定蛋白质中的 Ca(2+)结合位点是理解与 Ca(2+)结合蛋白相关疾病的分子基础的第一步。目前,这些位点是通过 X 射线晶体学或 NMR 分析在结构中确定的。然而,由于结合区域的灵活性或 Ca(2+)结合位点的低占有率,Ca(2+)结合位点并不总是在 X 射线结构中可见。同样,在 NMR 结构中也不能直接观察到 Ca(2+)和其配体氧。为了提高我们在 X 射线和 NMR 结构中预测 Ca(2+)结合位点的能力,我们报告了一种新的图论算法(MUG(C))来预测 Ca(2+)结合位点。MUG(C)使用与螯合氧原子共价键合的碳原子,并且不明确引用侧链氧配体坐标,在由 43 个 Ca(2+)结合蛋白组成的 X 射线结构数据集上实现了 94%的灵敏度和 76%的选择性。此外,通过使用不同的参数集,MUG(C)可以预测 NMR 结构中的 Ca(2+)结合位点,这些参数集是通过对源自 NMR 数据的 Ca(2+)约束和未约束 Ca(2+)加载结构的分析确定的。MUG(C)在没有使用 Ca(2+)约束的情况下,从 NMR 结构中推断出 21 个 Ca(2+)结合位点中的 20 个。MUG(C)的预测对 Ca(2+)结合位点也具有高度的选择性,因为对 Mg(2+)、Zn(2+)和 Pb(2+)结合位点的分析并未被识别为 Ca(2+)结合位点。这些结果表明,第二壳层碳原子簇的几何排列不仅足以准确识别 NMR 和 X 射线结构中的 Ca(2+)结合位点,而且足以区分 Ca(2+)和其他相关二价阳离子。

相似文献

1
Predicting Ca2+ -binding sites using refined carbon clusters.
Proteins. 2012 Dec;80(12):2666-79. doi: 10.1002/prot.24149. Epub 2012 Jul 31.
4
Predicting calcium-binding sites in proteins - a graph theory and geometry approach.
Proteins. 2006 Jul 1;64(1):34-42. doi: 10.1002/prot.20973.
5
Crystallographic identification of Ca2+ and Sr2+ coordination sites in synaptotagmin I C2B domain.
Protein Sci. 2004 Oct;13(10):2665-72. doi: 10.1110/ps.04832604. Epub 2004 Aug 31.
6
Auxiliary Ca2+ binding sites can influence the structure of CIB1.
Protein Sci. 2009 May;18(5):1128-34. doi: 10.1002/pro.104.
8
Structure prediction of a multi-domain EF-hand Ca2+ binding protein by PROPAINOR.
J Mol Model. 2005 Nov;11(6):481-8. doi: 10.1007/s00894-005-0256-7. Epub 2005 Aug 11.
10
The effects of CapZ peptide (TRTK-12) binding to S100B-Ca2+ as examined by NMR and X-ray crystallography.
J Mol Biol. 2010 Mar 12;396(5):1227-43. doi: 10.1016/j.jmb.2009.12.057. Epub 2010 Jan 4.

引用本文的文献

4
Structural Mechanism of Cooperative Regulation of Calcium-Sensing Receptor-Mediated Cellular Signaling.
Curr Opin Physiol. 2020 Oct;17:269-277. doi: 10.1016/j.cophys.2020.08.020. Epub 2020 Sep 11.
5
Structural Aspects and Prediction of Calmodulin-Binding Proteins.
Int J Mol Sci. 2020 Dec 30;22(1):308. doi: 10.3390/ijms22010308.
7
Design of Calcium-Binding Proteins to Sense Calcium.
Molecules. 2020 May 4;25(9):2148. doi: 10.3390/molecules25092148.
8
Molecular Basis of the Extracellular Ligands Mediated Signaling by the Calcium Sensing Receptor.
Front Physiol. 2016 Sep 30;7:441. doi: 10.3389/fphys.2016.00441. eCollection 2016.

本文引用的文献

1
Design and application of a class of sensors to monitor Ca2+ dynamics in high Ca2+ concentration cellular compartments.
Proc Natl Acad Sci U S A. 2011 Sep 27;108(39):16265-70. doi: 10.1073/pnas.1103015108. Epub 2011 Sep 13.
3
Calciomics: prediction and analysis of EF-hand calcium binding proteins by protein engineering.
Sci China Chem. 2010 Jan 1;53(1):52-60. doi: 10.1007/s11426-010-0011-5.
5
Improving structure-based function prediction using molecular dynamics.
Structure. 2009 Jul 15;17(7):919-29. doi: 10.1016/j.str.2009.05.010.
6
Viral calciomics: interplays between Ca2+ and virus.
Cell Calcium. 2009 Jul;46(1):1-17. doi: 10.1016/j.ceca.2009.05.005. Epub 2009 Jun 16.
9
Predicting small ligand binding sites in proteins using backbone structure.
Bioinformatics. 2008 Dec 15;24(24):2865-71. doi: 10.1093/bioinformatics/btn543. Epub 2008 Oct 21.
10
S100A6 binds p53 and affects its activity.
Int J Biochem Cell Biol. 2009 Apr;41(4):784-90. doi: 10.1016/j.biocel.2008.08.007. Epub 2008 Aug 13.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验