Suppr超能文献

微囊化并经γ射线辐射灭菌后胶质细胞源性神经营养因子(GDNF)的生物活性的保持。

Preservation of biological activity of glial cell line-derived neurotrophic factor (GDNF) after microencapsulation and sterilization by gamma irradiation.

机构信息

Dep. of Pharmacy and Pharmaceutical Technology, School of Pharmacy, Avd. Complutense s/n, Complutense University, Madrid 28040, Spain.

出版信息

Int J Pharm. 2012 Oct 15;436(1-2):545-54. doi: 10.1016/j.ijpharm.2012.07.019. Epub 2012 Jul 22.

Abstract

A main issue in controlled delivery of biotechnological products from injectable biodegradable microspheres is to preserve their integrity and functional activity after the microencapsulation process and final sterilization. The present experimental work tested different technological approaches to maintain the biological activity of an encapsulated biotechnological product within PLGA [poly (lactic-co-glycolic acid)] microspheres (MS) after their sterilization by gamma irradiation. GDNF (glial cell line-derived neurotrophic factor), useful in the treatment of several neurodegenerative diseases, was chosen as a labile model protein. In the particular case of optic nerve degeneration, GDNF has been demonstrated to improve the damaged retinal ganglion cells (RGC) survival. GDNF was encapsulated in its molecular state by the water-in-oil-in-water (W/O/W) technique or as solid according to the solid-in-oil-in-water (S/O/W) method. Based on the S/O/W technique, GDNF was included in the PLGA microspheres alone (S/O/W 1) or in combination with an antioxidant (vitamin E, Vit E) (S/O/W 2). Microspheres were sterilized by gamma-irradiation (dose of 25 kGy) at room and low (-78 °C) temperatures. Functional activity of GDNF released from the different microspheres was evaluated both before and after sterilization in their potential target cells (retinal cells). Although none of the systems proposed achieved with the goal of totally retain the structural stability of the GDNF-dimer, the protein released from the S/O/W 2 microspheres was clearly the most biologically active, showing significantly less retinal cell death than that released from either W/O/W or S/O/W 1 particles, even in low amounts of the neurotrophic factor. According to the results presented in this work, the biological activity of biotechnological products after microencapsulation and sterilization can be further preserved by the inclusion of the active molecule in its solid state in combination with antioxidants and using low temperature (-78 °C) during gamma irradiation exposure.

摘要

将生物技术产品从可注射生物降解微球中进行控制释放的一个主要问题是在微囊化过程和最终灭菌后保持其完整性和功能活性。本实验研究测试了不同的技术方法,以保持包封的生物技术产品在聚丙交酯-乙交酯[PLGA(聚乳酸-共-羟基乙酸)]微球(MS)中的生物活性,这些微球通过伽马辐照进行灭菌。GDNF(胶质细胞源性神经营养因子)被选择为一种不稳定的模型蛋白,用于治疗几种神经退行性疾病。在视神经变性的特殊情况下,GDNF 已被证明可改善受损的视网膜神经节细胞(RGC)的存活。GDNF 以分子状态通过水包油包水(W/O/W)技术或根据固包油包水(S/O/W)方法被包封在微球中。基于 S/O/W 技术,GDNF 单独(S/O/W 1)或与抗氧化剂(维生素 E,Vit E)组合(S/O/W 2)被包含在 PLGA 微球中。微球在室温下和低温(-78°C)下通过伽马辐照(剂量为 25 kGy)进行灭菌。在其潜在的靶细胞(视网膜细胞)中,评估了从不同微球中释放的 GDNF 的功能活性,无论是在灭菌之前还是之后。尽管所提出的系统都没有达到完全保留 GDNF-二聚体结构稳定性的目标,但从 S/O/W 2 微球中释放的蛋白质显然是最具生物活性的,与从 W/O/W 或 S/O/W 1 颗粒中释放的蛋白质相比,显示出明显更少的视网膜细胞死亡,即使在神经生长因子的低含量下也是如此。根据本工作中提出的结果,通过将活性分子以固态形式与抗氧化剂结合并在伽马辐照暴露期间使用低温(-78°C),可以进一步保留微囊化和灭菌后生物技术产品的生物活性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验