Aragón-Navas Alba, Rodrigo Maria Jesus, Munuera Inés, García-Herranz David, Subías Manuel, Villacampa Pilar, García-Feijoo Julián, Pablo Luis, Garcia-Martin Elena, Herrero-Vanrell Rocio, Bravo-Osuna Irene
Innovation, Therapy and Pharmaceutical Development in Ophthalmology (InnOftal) Research Group, UCM 920415, Department of Pharmaceutics and Food Technology, Faculty of Pharmacy, Complutense University of Madrid, Madrid, Spain.
Health Research Institute, San Carlos Clinical Hospital (IdISSC), Madrid, Spain.
Drug Deliv Transl Res. 2025 May;15(5):1660-1684. doi: 10.1007/s13346-024-01702-x. Epub 2024 Oct 3.
This work focused on the co-encapsulation and simultaneous co-delivery of three different neuroprotective drugs in PLGA (poly(lactic-co-glycolic acid) microspheres for the treatment of glaucoma. For formulation optimization, dexamethasone (anti-inflammatory) and ursodeoxycholic acid (anti-apoptotic) were co-loaded by the solid-in-oil-in-water emulsion solvent extraction-evaporation technique as a first step. The incorporation of a water-soluble co-solvent (ethanol) and different amounts of dexamethasone resulted critical for the encapsulation of the neuroprotective agents and their initial release. The optimized formulation was obtained with 60 mg of dexamethasone and using an 80:20 dichloromethane:ethanol ratio. In the second step in the microencapsulation process, the incorporation of the glial cell line-derived neurotrophic factor (GDNF) was performed. The final prototype showed encapsulation efficiencies for each component above 50% with suitable properties for long-term application for at least 3 months. Physicochemical studies were performed by SEM, TEM, DSC, XRD, and gas chromatography. The evaluation of the kinetic release by the Gallagher-Corrigan analysis with Gorrasi correction helped to understand the influence of the co-microencapsulation on the delivery of the different actives from the optimized formulation. The final prototype was tested in a chronic glaucoma animal model. Rats received two intravitreal injections of the neuroprotective treatment within a 24-week follow-up study. The proposed formulation improved retinal ganglion cell (RGC) functionality examined by electroretinography. Also, it was able to maintain a neuroretinal thickness similar to that of healthy animals scanned by in vivo optical coherence tomography, and a higher RGC count on histology compared to glaucomatous animals at the end of the study.
这项工作聚焦于将三种不同的神经保护药物共包封并同时共递送于聚乳酸-羟基乙酸共聚物(PLGA)微球中,用于治疗青光眼。为了优化制剂,第一步采用水包油包固乳液溶剂萃取-蒸发技术将地塞米松(抗炎药)和熊去氧胆酸(抗凋亡药)共负载。水溶性共溶剂(乙醇)的加入以及不同量的地塞米松对于神经保护剂的包封及其初始释放至关重要。使用60 mg地塞米松并采用80:20二氯甲烷:乙醇的比例获得了优化制剂。在微囊化过程的第二步,加入了胶质细胞源性神经营养因子(GDNF)。最终的原型显示各组分的包封效率均高于50%,具有适合至少3个月长期应用的性质。通过扫描电子显微镜(SEM)、透射电子显微镜(TEM)、差示扫描量热法(DSC)、X射线衍射(XRD)和气相色谱法进行了物理化学研究。采用经戈拉西校正的加拉格尔-科里根分析法对动力学释放进行评估,有助于了解共微囊化对优化制剂中不同活性成分递送的影响。最终的原型在慢性青光眼动物模型中进行了测试。在一项为期24周的随访研究中,大鼠接受了两次玻璃体内注射神经保护治疗。通过视网膜电图检查,所提出的制剂改善了视网膜神经节细胞(RGC)的功能。此外,与研究结束时的青光眼动物相比,它能够通过体内光学相干断层扫描维持与健康动物相似的神经视网膜厚度,并且在组织学上具有更高的RGC计数。