Suppr超能文献

粘弹性对活细胞中单分子力谱分析的影响。

Effect of viscoelasticity on the analysis of single-molecule force spectroscopy on live cells.

机构信息

University of Maryland Baltimore County, Baltimore, Maryland, USA.

出版信息

Biophys J. 2012 Jul 3;103(1):137-45. doi: 10.1016/j.bpj.2012.05.044.

Abstract

Single-molecule force spectroscopy is used to probe the kinetics of receptor-ligand bonds by applying mechanical forces to an intermediate media on which the molecules reside. When this intermediate media is a live cell, the viscoelastic properties can affect the calculation of rate constants. We theoretically investigate the effect of media viscoelasticity on the common assumption that the bond force is equal to the instantaneous applied force. Dynamic force spectroscopy is simulated between two cells of varying micromechanical properties adhered by a single bond with a constant kinetic off-rate. We show that cell and microvilli deformation, and hydrodynamic drag contribute to bond forces that can be 28-90% lower than the applied force for loading rates of 10(3)-10(7) pN/s, resulting in longer bond lifetimes. These longer bond lifetimes are not caused by changes in bond kinetics; rather, they are due to the mechanical response of the intermediate media on which the bonds reside. Under the assumption that the instantaneous bond force is equal to the applied force--thereby ignoring viscoelasticity--leads to 14-39% error in the determination of off-rates. We present an approach that incorporates viscoelastic properties in calculating the instantaneous bond force and kinetic dissociation parameter of the intermolecular bond.

摘要

单分子力谱学通过对分子所在的中间介质施加机械力来探测受体-配体键的动力学。当这个中间介质是活细胞时,粘弹性会影响速率常数的计算。我们从理论上研究了介质粘弹性对常见假设的影响,即键力等于瞬时施加的力。模拟了两个具有不同微机械性能的细胞之间的动态力谱,它们通过一个具有恒定动力学解吸率的单键连接。我们表明,细胞和微绒毛的变形以及流体动力阻力会导致键力降低,对于加载速率为 10(3)-10(7) pN/s 的情况,键力可降低 28-90%,从而导致键的寿命延长。这些更长的键寿命不是由于键动力学的变化引起的,而是由于中间介质的力学响应。假设瞬时键力等于施加的力,从而忽略粘弹性,会导致解吸率的确定出现 14-39%的误差。我们提出了一种方法,该方法将粘弹性特性纳入到计算瞬时键力和分子间键的动力学解离参数中。

相似文献

1
Effect of viscoelasticity on the analysis of single-molecule force spectroscopy on live cells.
Biophys J. 2012 Jul 3;103(1):137-45. doi: 10.1016/j.bpj.2012.05.044.
2
Effect of cell and microvillus mechanics on the transmission of applied loads to single bonds in dynamic force spectroscopy.
Phys Rev E Stat Nonlin Soft Matter Phys. 2011 Jul;84(1 Pt 1):011912. doi: 10.1103/PhysRevE.84.011912. Epub 2011 Jul 18.
3
Effects of cellular viscoelasticity in multiple-bond force spectroscopy.
Biomech Model Mechanobiol. 2015 Jun;14(3):615-32. doi: 10.1007/s10237-014-0626-0. Epub 2014 Oct 19.
4
Effects of cellular viscoelasticity in lifetime extraction of single receptor-ligand bonds.
Phys Rev E Stat Nonlin Soft Matter Phys. 2015 Jun;91(6):062701. doi: 10.1103/PhysRevE.91.062701. Epub 2015 Jun 5.
5
Rupture of single receptor-ligand bonds: a new insight into probability distribution function.
Colloids Surf B Biointerfaces. 2013 Jan 1;101:501-9. doi: 10.1016/j.colsurfb.2012.07.020. Epub 2012 Jul 27.
6
Effect of viscous drag on multiple receptor-ligand bonds rupture force.
Colloids Surf B Biointerfaces. 2012 Dec 1;100:229-39. doi: 10.1016/j.colsurfb.2012.05.028. Epub 2012 Jun 7.
8
The viscoelastic properties of microvilli are dependent upon the cell-surface molecule.
Biochem Biophys Res Commun. 2010 Jul 2;397(3):621-5. doi: 10.1016/j.bbrc.2010.06.012. Epub 2010 Jun 4.
9
Hydrodynamic effects in fast AFM single-molecule force measurements.
Eur Biophys J. 2005 Feb;34(1):91-6. doi: 10.1007/s00249-004-0430-3. Epub 2004 Jul 15.
10
A theoretical method to determine unstressed off-rate from multiple bond force spectroscopy.
Colloids Surf B Biointerfaces. 2012 Jun 15;95:50-6. doi: 10.1016/j.colsurfb.2012.02.010. Epub 2012 Feb 25.

引用本文的文献

1
Point-of-care (POC) devices by means of advanced MEMS.
Talanta. 2015 Dec 1;145:55-9. doi: 10.1016/j.talanta.2015.04.032. Epub 2015 Apr 23.
3
Yielding elastic tethers stabilize robust cell adhesion.
PLoS Comput Biol. 2014 Dec 4;10(12):e1003971. doi: 10.1371/journal.pcbi.1003971. eCollection 2014 Dec.
4
Atomic force microscopy of asymmetric membranes from turtle erythrocytes.
Mol Cells. 2014 Aug;37(8):592-7. doi: 10.14348/molcells.2014.0115. Epub 2014 Aug 18.

本文引用的文献

1
Large deformation of red blood cell ghosts in a simple shear flow.
Phys Fluids (1994). 1998 Aug;10(8):1834-1845. doi: 10.1063/1.869703. Epub 1998 Jul 1.
2
Viscoelastic properties of model segments of collagen molecules.
Matrix Biol. 2012 Mar;31(2):141-9. doi: 10.1016/j.matbio.2011.11.005. Epub 2011 Dec 21.
3
Effect of cell and microvillus mechanics on the transmission of applied loads to single bonds in dynamic force spectroscopy.
Phys Rev E Stat Nonlin Soft Matter Phys. 2011 Jul;84(1 Pt 1):011912. doi: 10.1103/PhysRevE.84.011912. Epub 2011 Jul 18.
4
Multi-scale simulation of L-selectin-PSGL-1-dependent homotypic leukocyte binding and rupture.
Biomech Model Mechanobiol. 2010 Oct;9(5):613-27. doi: 10.1007/s10237-010-0201-2. Epub 2010 Mar 14.
5
Mechanisms of membrane deformation by lipid-binding domains.
Prog Lipid Res. 2009 Sep;48(5):298-305. doi: 10.1016/j.plipres.2009.05.002. Epub 2009 May 27.
6
Stretching polysaccharides on live cells using single molecule force spectroscopy.
Nat Protoc. 2009;4(6):939-46. doi: 10.1038/nprot.2009.65. Epub 2009 May 28.
7
Second harmonic atomic force microscopy imaging of live and fixed mammalian cells.
Ultramicroscopy. 2009 Jul;109(8):1056-60. doi: 10.1016/j.ultramic.2009.03.020. Epub 2009 Mar 19.
8
Low spring constant regulates P-selectin-PSGL-1 bond rupture.
Biophys J. 2008 Dec;95(11):5439-48. doi: 10.1529/biophysj.108.137141. Epub 2008 Aug 29.
9
Geometric confinement governs the rupture strength of H-bond assemblies at a critical length scale.
Nano Lett. 2008 Feb;8(2):743-8. doi: 10.1021/nl0731670. Epub 2008 Feb 13.
10
Optimal evaluation of single-molecule force spectroscopy experiments.
Phys Rev E Stat Nonlin Soft Matter Phys. 2007 Nov;76(5 Pt 1):052901. doi: 10.1103/PhysRevE.76.052901. Epub 2007 Nov 21.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验