Suppr超能文献

使用局部鲁棒统计驱动主动轮廓的三维交互式多目标分割工具。

A 3D interactive multi-object segmentation tool using local robust statistics driven active contours.

机构信息

Psychiatry Neuroimaging Laboratory, Brigham & Women's Hospital, Harvard Medical School, Boston, MA 02115, United States.

出版信息

Med Image Anal. 2012 Aug;16(6):1216-27. doi: 10.1016/j.media.2012.06.002. Epub 2012 Jul 6.

Abstract

Extracting anatomical and functional significant structures renders one of the important tasks for both the theoretical study of the medical image analysis, and the clinical and practical community. In the past, much work has been dedicated only to the algorithmic development. Nevertheless, for clinical end users, a well designed algorithm with an interactive software is necessary for an algorithm to be utilized in their daily work. Furthermore, the software would better be open sourced in order to be used and validated by not only the authors but also the entire community. Therefore, the contribution of the present work is twofolds: first, we propose a new robust statistics based conformal metric and the conformal area driven multiple active contour framework, to simultaneously extract multiple targets from MR and CT medical imagery in 3D. Second, an open source graphically interactive 3D segmentation tool based on the aforementioned contour evolution is implemented and is publicly available for end users on multiple platforms. In using this software for the segmentation task, the process is initiated by the user drawn strokes (seeds) in the target region in the image. Then, the local robust statistics are used to describe the object features, and such features are learned adaptively from the seeds under a non-parametric estimation scheme. Subsequently, several active contours evolve simultaneously with their interactions being motivated by the principles of action and reaction-this not only guarantees mutual exclusiveness among the contours, but also no longer relies upon the assumption that the multiple objects fill the entire image domain, which was tacitly or explicitly assumed in many previous works. In doing so, the contours interact and converge to equilibrium at the desired positions of the desired multiple objects. Furthermore, with the aim of not only validating the algorithm and the software, but also demonstrating how the tool is to be used, we provide the reader reproducible experiments that demonstrate the capability of the proposed segmentation tool on several public available data sets.

摘要

提取解剖和功能显著结构是医学图像分析理论研究和临床实际应用的重要任务之一。过去,许多工作都专注于算法开发。然而,对于临床终端用户来说,一个设计良好的算法需要配套交互式软件,这样算法才能在他们的日常工作中得到应用。此外,为了让不仅作者,而且整个社区都能够使用和验证该算法,软件最好是开源的。因此,本工作有两个贡献:首先,我们提出了一种新的基于稳健统计的保形度量和保形面积驱动的多主动轮廓框架,用于从 MR 和 CT 医学图像中同时提取 3D 中的多个目标。其次,实现了一个基于上述轮廓演化的开源图形交互 3D 分割工具,并在多个平台上向终端用户公开。在使用该软件进行分割任务时,用户首先在图像中的目标区域绘制笔画(种子),然后使用局部稳健统计来描述目标特征,并在非参数估计方案下自适应地从种子中学习这些特征。随后,多个主动轮廓同时演化,它们的相互作用基于作用力和反作用力的原理——这不仅保证了轮廓之间的互斥性,而且不再依赖于多个对象填充整个图像域的假设,这在许多以前的工作中是隐含或显式的。这样,轮廓相互作用并在所需多个对象的期望位置达到平衡。此外,为了不仅验证算法和软件,而且展示如何使用该工具,我们提供了可重现的实验,演示了所提出的分割工具在几个公共可用数据集上的功能。

相似文献

3
Adaptive metamorphs model for 3D medical image segmentation.用于3D医学图像分割的自适应变形模型
Med Image Comput Comput Assist Interv. 2007;10(Pt 1):302-10. doi: 10.1007/978-3-540-75757-3_37.
5
Robust interactive image segmentation using convex active contours.基于凸主动轮廓的鲁棒交互式图像分割。
IEEE Trans Image Process. 2012 Aug;21(8):3734-43. doi: 10.1109/TIP.2012.2191566. Epub 2012 Mar 21.
7
Plugin for OsiriX: mean shift segmentation.OsiriX插件:均值漂移分割
Annu Int Conf IEEE Eng Med Biol Soc. 2007;2007:3060-3. doi: 10.1109/IEMBS.2007.4352974.
9
Interactive image segmentation using Dirichlet process multiple-view learning.使用狄利克雷过程多视图学习进行交互式图像分割。
IEEE Trans Image Process. 2012 Apr;21(4):2119-29. doi: 10.1109/TIP.2011.2181398. Epub 2011 Dec 22.
10
A novel approach for curve evolution in segmentation of medical images.一种医学图像分割中曲线演化的新方法。
Comput Med Imaging Graph. 2010 Jul;34(5):354-61. doi: 10.1016/j.compmedimag.2009.12.006. Epub 2010 Jan 18.

引用本文的文献

5
Volume Exploration Using Multidimensional Bhattacharyya Flow.利用多维巴塔恰里亚流进行体积探索。
IEEE Trans Vis Comput Graph. 2023 Mar;29(3):1651-1663. doi: 10.1109/TVCG.2021.3127918. Epub 2023 Jan 30.
7
Integrated 3D Anatomical Model for Automatic Myocardial Segmentation in Cardiac CT Imagery.用于心脏CT图像中心肌自动分割的集成3D解剖模型
Comput Methods Biomech Biomed Eng Imaging Vis. 2019;7(5-6):690-706. doi: 10.1080/21681163.2019.1583607. Epub 2019 Mar 7.

本文引用的文献

1
Localizing region-based active contours.基于区域的主动轮廓定位
IEEE Trans Image Process. 2008 Nov;17(11):2029-39. doi: 10.1109/TIP.2008.2004611.
2
Active contours without edges.无边缘活动轮廓。
IEEE Trans Image Process. 2001;10(2):266-77. doi: 10.1109/83.902291.
5
Random walks for image segmentation.用于图像分割的随机游走算法
IEEE Trans Pattern Anal Mach Intell. 2006 Nov;28(11):1768-83. doi: 10.1109/TPAMI.2006.233.
6
Level set segmentation with multiple regions.具有多个区域的水平集分割
IEEE Trans Image Process. 2006 Oct;15(10):3213-8. doi: 10.1109/tip.2006.877481.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验