Department of Radiology, University of California San Francisco, San Francisco, CA, 94121, USA.
Department of Surgery, University of California San Francisco, San Francisco, CA, 94121, USA.
Med Phys. 2019 Jan;46(1):180-189. doi: 10.1002/mp.13245. Epub 2018 Nov 20.
Segmentation of cardiac medical images, an important step in measuring cardiac function, is usually performed either manually or semiautomatically. Fully automatic segmentation of the left ventricle (LV), the right ventricle (RV) as well as the myocardium of three-dimensional (3D) magnetic resonance (MR) images throughout the entire cardiac cycle (four-dimensional, 4D), remains challenging. This study proposes a deformable-based segmentation methodology for efficiently segmenting 4D (3D + t) cardiac MR images.
The proposed methodology first used the Hough transform and the local Gaussian distribution method (LGD) to segment the LV endocardial contours from cardiac MR images. Following this, a novel level set-based shape prior method was applied to generate the LV epicardial contours and the RV boundary.
This automatic image segmentation approach has been applied to studies on 17 subjects. The results demonstrated that the proposed method was efficient compared to manual segmentation, achieving a segmentation accuracy with average Dice values of 88.62 ± 5.47%, 87.35 ± 7.26%, and 82.63 ± 6.22% for the LV endocardial, LV epicardial, and RV contours, respectively.
We have presented a method for accurate LV and RV segmentation. Compared to three existing methods, the proposed method can successfully segment the LV and yield the highest Dice value. This makes it an option for clinical assessment of the volume, size, and thickness of the ventricles.
心脏医学图像的分割是衡量心脏功能的重要步骤,通常是手动或半自动完成的。然而,要在整个心动周期(四维,4D)内实现三维(3D)磁共振(MR)图像的左心室(LV)、右心室(RV)以及心肌的全自动分割仍然具有挑战性。本研究提出了一种基于变形的分割方法,用于高效地分割 4D(3D+t)心脏 MR 图像。
该方法首先使用霍夫变换和局部高斯分布方法(LGD)从心脏 MR 图像中分割 LV 心内膜轮廓。然后,应用一种新的基于水平集的形状先验方法生成 LV 心外膜轮廓和 RV 边界。
该自动图像分割方法已应用于 17 名受试者的研究。结果表明,与手动分割相比,该方法具有较高的效率,其分割精度的平均 Dice 值分别为 LV 心内膜、LV 心外膜和 RV 轮廓的 88.62±5.47%、87.35±7.26%和 82.63±6.22%。
我们提出了一种准确的 LV 和 RV 分割方法。与现有的三种方法相比,该方法能够成功地分割 LV,获得最高的 Dice 值。这使其成为评估心室容积、大小和厚度的临床评估的一种选择。