Suppr超能文献

形态学比特平面在视网膜血管提取中的应用。

Application of morphological bit planes in retinal blood vessel extraction.

机构信息

Digital Imaging Research Centre, Faculty of Science Engineering and Computing, Kingston University London, Penrhyn Road, Kingston upon Thames, KT12EE, UK.

出版信息

J Digit Imaging. 2013 Apr;26(2):274-86. doi: 10.1007/s10278-012-9513-3.

Abstract

The appearance of the retinal blood vessels is an important diagnostic indicator of various clinical disorders of the eye and the body. Retinal blood vessels have been shown to provide evidence in terms of change in diameter, branching angles, or tortuosity, as a result of ophthalmic disease. This paper reports the development for an automated method for segmentation of blood vessels in retinal images. A unique combination of methods for retinal blood vessel skeleton detection and multidirectional morphological bit plane slicing is presented to extract the blood vessels from the color retinal images. The skeleton of main vessels is extracted by the application of directional differential operators and then evaluation of combination of derivative signs and average derivative values. Mathematical morphology has been materialized as a proficient technique for quantifying the retinal vasculature in ocular fundus images. A multidirectional top-hat operator with rotating structuring elements is used to emphasize the vessels in a particular direction, and information is extracted using bit plane slicing. An iterative region growing method is applied to integrate the main skeleton and the images resulting from bit plane slicing of vessel direction-dependent morphological filters. The approach is tested on two publicly available databases DRIVE and STARE. Average accuracy achieved by the proposed method is 0.9423 for both the databases with significant values of sensitivity and specificity also; the algorithm outperforms the second human observer in terms of precision of segmented vessel tree.

摘要

视网膜血管的外观是各种眼部和身体临床疾病的重要诊断指标。已经表明,由于眼部疾病,视网膜血管的直径、分支角度或迂曲度的变化提供了证据。本文介绍了一种自动分割视网膜图像中血管的方法。提出了一种独特的视网膜血管骨架检测和多方向形态位平面切片方法的组合,从彩色视网膜图像中提取血管。通过应用方向微分算子并评估导数符号和平均导数值的组合来提取主要血管的骨架。数学形态学已成为量化眼部眼底图像中视网膜血管的有效技术。使用带有旋转结构元素的多向顶帽算子来突出特定方向的血管,并使用位平面切片提取信息。应用迭代区域生长方法将主要骨架和血管方向相关形态滤波器的位平面切片的图像进行集成。该方法在两个公开可用的数据库 DRIVE 和 STARE 上进行了测试。对于这两个数据库,所提出的方法的平均准确度达到 0.9423,并且具有显著的敏感性和特异性值;该算法在分割血管树的精度方面优于第二位人类观察者。

相似文献

1
Application of morphological bit planes in retinal blood vessel extraction.
J Digit Imaging. 2013 Apr;26(2):274-86. doi: 10.1007/s10278-012-9513-3.
2
An approach to localize the retinal blood vessels using bit planes and centerline detection.
Comput Methods Programs Biomed. 2012 Nov;108(2):600-16. doi: 10.1016/j.cmpb.2011.08.009. Epub 2011 Sep 29.
3
Segmentation of blood vessels from red-free and fluorescein retinal images.
Med Image Anal. 2007 Feb;11(1):47-61. doi: 10.1016/j.media.2006.11.004. Epub 2007 Jan 3.
4
Segmentation of retinal blood vessels by combining the detection of centerlines and morphological reconstruction.
IEEE Trans Med Imaging. 2006 Sep;25(9):1200-13. doi: 10.1109/tmi.2006.879955.
5
[Automatic detection of vessels in color fundus images].
Arch Soc Esp Oftalmol. 2010 Mar;85(3):103-9.
6
Automated characterization of blood vessels as arteries and veins in retinal images.
Comput Med Imaging Graph. 2013 Oct-Dec;37(7-8):607-17. doi: 10.1016/j.compmedimag.2013.06.003. Epub 2013 Jul 10.
7
A new supervised method for blood vessel segmentation in retinal images by using gray-level and moment invariants-based features.
IEEE Trans Med Imaging. 2011 Jan;30(1):146-58. doi: 10.1109/TMI.2010.2064333. Epub 2010 Aug 9.
8
An efficient retinal blood vessel segmentation in eye fundus images by using optimized top-hat and homomorphic filtering.
Comput Methods Programs Biomed. 2021 Apr;201:105949. doi: 10.1016/j.cmpb.2021.105949. Epub 2021 Jan 27.
9
Simultaneously identifying all true vessels from segmented retinal images.
IEEE Trans Biomed Eng. 2013 Jul;60(7):1851-8. doi: 10.1109/TBME.2013.2243447. Epub 2013 Jan 29.
10
Automated measurement of the arteriolar-to-venular width ratio in digital color fundus photographs.
IEEE Trans Med Imaging. 2011 Nov;30(11):1941-50. doi: 10.1109/TMI.2011.2159619. Epub 2011 Jun 16.

引用本文的文献

1
A multi-modal multi-branch framework for retinal vessel segmentation using ultra-widefield fundus photographs.
Front Cell Dev Biol. 2025 Jan 8;12:1532228. doi: 10.3389/fcell.2024.1532228. eCollection 2024.
2
An improved semi-supervised segmentation of the retinal vasculature using curvelet-based contrast adjustment and generalized linear model.
Heliyon. 2024 Sep 17;10(18):e38027. doi: 10.1016/j.heliyon.2024.e38027. eCollection 2024 Sep 30.
3
Skip connection information enhancement network for retinal vessel segmentation.
Med Biol Eng Comput. 2024 Oct;62(10):3163-3178. doi: 10.1007/s11517-024-03108-w. Epub 2024 May 25.
5
Image Segmentation of Retinal Blood Vessels Based on Dual-Attention Multiscale Feature Fusion.
Comput Math Methods Med. 2022 Jul 6;2022:8111883. doi: 10.1155/2022/8111883. eCollection 2022.
6
Retinal Vessel Extraction Assisted Multi-Channel Feature Map and U-Net.
Front Public Health. 2022 Mar 17;10:858327. doi: 10.3389/fpubh.2022.858327. eCollection 2022.
8
"Keep it simple, scholar": an experimental analysis of few-parameter segmentation networks for retinal vessels in fundus imaging.
Int J Comput Assist Radiol Surg. 2021 Jun;16(6):967-978. doi: 10.1007/s11548-021-02340-1. Epub 2021 Apr 30.
9
A Hybrid Unsupervised Approach for Retinal Vessel Segmentation.
Biomed Res Int. 2020 Dec 10;2020:8365783. doi: 10.1155/2020/8365783. eCollection 2020.
10
Multiloss Function Based Deep Convolutional Neural Network for Segmentation of Retinal Vasculature into Arterioles and Venules.
Biomed Res Int. 2019 Apr 14;2019:4747230. doi: 10.1155/2019/4747230. eCollection 2019.

本文引用的文献

1
An ensemble classification-based approach applied to retinal blood vessel segmentation.
IEEE Trans Biomed Eng. 2012 Sep;59(9):2538-48. doi: 10.1109/TBME.2012.2205687. Epub 2012 Jun 22.
2
Blood vessel segmentation methodologies in retinal images--a survey.
Comput Methods Programs Biomed. 2012 Oct;108(1):407-33. doi: 10.1016/j.cmpb.2012.03.009. Epub 2012 Apr 22.
3
An approach to localize the retinal blood vessels using bit planes and centerline detection.
Comput Methods Programs Biomed. 2012 Nov;108(2):600-16. doi: 10.1016/j.cmpb.2011.08.009. Epub 2011 Sep 29.
4
Morphological multiscale enhancement, fuzzy filter and watershed for vascular tree extraction in angiogram.
J Med Syst. 2011 Oct;35(5):811-24. doi: 10.1007/s10916-010-9466-3. Epub 2010 May 15.
5
Unsupervised fuzzy based vessel segmentation in pathological digital fundus images.
J Med Syst. 2010 Oct;34(5):849-58. doi: 10.1007/s10916-009-9299-0. Epub 2009 May 9.
6
A new supervised method for blood vessel segmentation in retinal images by using gray-level and moment invariants-based features.
IEEE Trans Med Imaging. 2011 Jan;30(1):146-58. doi: 10.1109/TMI.2010.2064333. Epub 2010 Aug 9.
7
FABC: retinal vessel segmentation using AdaBoost.
IEEE Trans Inf Technol Biomed. 2010 Sep;14(5):1267-74. doi: 10.1109/TITB.2010.2052282. Epub 2010 Jun 7.
8
General retinal vessel segmentation using regularization-based multiconcavity modeling.
IEEE Trans Med Imaging. 2010 Jul;29(7):1369-81. doi: 10.1109/TMI.2010.2043259. Epub 2010 Mar 18.
9
Retinal vessel extraction by matched filter with first-order derivative of Gaussian.
Comput Biol Med. 2010 Apr;40(4):438-45. doi: 10.1016/j.compbiomed.2010.02.008. Epub 2010 Mar 3.
10
Detection of blood vessels in ophthalmoscope images using MF/ant (matched filter/ant colony) algorithm.
Comput Methods Programs Biomed. 2009 Nov;96(2):85-95. doi: 10.1016/j.cmpb.2009.04.005. Epub 2009 May 6.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验