Suppr超能文献

形态学比特平面在视网膜血管提取中的应用。

Application of morphological bit planes in retinal blood vessel extraction.

机构信息

Digital Imaging Research Centre, Faculty of Science Engineering and Computing, Kingston University London, Penrhyn Road, Kingston upon Thames, KT12EE, UK.

出版信息

J Digit Imaging. 2013 Apr;26(2):274-86. doi: 10.1007/s10278-012-9513-3.

Abstract

The appearance of the retinal blood vessels is an important diagnostic indicator of various clinical disorders of the eye and the body. Retinal blood vessels have been shown to provide evidence in terms of change in diameter, branching angles, or tortuosity, as a result of ophthalmic disease. This paper reports the development for an automated method for segmentation of blood vessels in retinal images. A unique combination of methods for retinal blood vessel skeleton detection and multidirectional morphological bit plane slicing is presented to extract the blood vessels from the color retinal images. The skeleton of main vessels is extracted by the application of directional differential operators and then evaluation of combination of derivative signs and average derivative values. Mathematical morphology has been materialized as a proficient technique for quantifying the retinal vasculature in ocular fundus images. A multidirectional top-hat operator with rotating structuring elements is used to emphasize the vessels in a particular direction, and information is extracted using bit plane slicing. An iterative region growing method is applied to integrate the main skeleton and the images resulting from bit plane slicing of vessel direction-dependent morphological filters. The approach is tested on two publicly available databases DRIVE and STARE. Average accuracy achieved by the proposed method is 0.9423 for both the databases with significant values of sensitivity and specificity also; the algorithm outperforms the second human observer in terms of precision of segmented vessel tree.

摘要

视网膜血管的外观是各种眼部和身体临床疾病的重要诊断指标。已经表明,由于眼部疾病,视网膜血管的直径、分支角度或迂曲度的变化提供了证据。本文介绍了一种自动分割视网膜图像中血管的方法。提出了一种独特的视网膜血管骨架检测和多方向形态位平面切片方法的组合,从彩色视网膜图像中提取血管。通过应用方向微分算子并评估导数符号和平均导数值的组合来提取主要血管的骨架。数学形态学已成为量化眼部眼底图像中视网膜血管的有效技术。使用带有旋转结构元素的多向顶帽算子来突出特定方向的血管,并使用位平面切片提取信息。应用迭代区域生长方法将主要骨架和血管方向相关形态滤波器的位平面切片的图像进行集成。该方法在两个公开可用的数据库 DRIVE 和 STARE 上进行了测试。对于这两个数据库,所提出的方法的平均准确度达到 0.9423,并且具有显著的敏感性和特异性值;该算法在分割血管树的精度方面优于第二位人类观察者。

相似文献

3
Segmentation of blood vessels from red-free and fluorescein retinal images.从无赤光和荧光素视网膜图像中分割血管。
Med Image Anal. 2007 Feb;11(1):47-61. doi: 10.1016/j.media.2006.11.004. Epub 2007 Jan 3.
6
Automated characterization of blood vessels as arteries and veins in retinal images.视网膜图像中血管的自动分类为动脉和静脉。
Comput Med Imaging Graph. 2013 Oct-Dec;37(7-8):607-17. doi: 10.1016/j.compmedimag.2013.06.003. Epub 2013 Jul 10.
9
Simultaneously identifying all true vessels from segmented retinal images.从分割的视网膜图像中同时识别所有真实的血管。
IEEE Trans Biomed Eng. 2013 Jul;60(7):1851-8. doi: 10.1109/TBME.2013.2243447. Epub 2013 Jan 29.

引用本文的文献

6
Retinal Vessel Extraction Assisted Multi-Channel Feature Map and U-Net.视网膜血管提取辅助多通道特征图和 U-Net
Front Public Health. 2022 Mar 17;10:858327. doi: 10.3389/fpubh.2022.858327. eCollection 2022.
9
A Hybrid Unsupervised Approach for Retinal Vessel Segmentation.一种混合无监督的视网膜血管分割方法。
Biomed Res Int. 2020 Dec 10;2020:8365783. doi: 10.1155/2020/8365783. eCollection 2020.

本文引用的文献

2
Blood vessel segmentation methodologies in retinal images--a survey.视网膜图像中的血管分割方法综述。
Comput Methods Programs Biomed. 2012 Oct;108(1):407-33. doi: 10.1016/j.cmpb.2012.03.009. Epub 2012 Apr 22.
7
FABC: retinal vessel segmentation using AdaBoost.FABC:使用AdaBoost的视网膜血管分割
IEEE Trans Inf Technol Biomed. 2010 Sep;14(5):1267-74. doi: 10.1109/TITB.2010.2052282. Epub 2010 Jun 7.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验