Suppr超能文献

通过使用优化的顶帽变换和同态滤波实现眼底图像中高效的视网膜血管分割。

An efficient retinal blood vessel segmentation in eye fundus images by using optimized top-hat and homomorphic filtering.

作者信息

Ramos-Soto Oscar, Rodríguez-Esparza Erick, Balderas-Mata Sandra E, Oliva Diego, Hassanien Aboul Ella, Meleppat Ratheesh K, Zawadzki Robert J

机构信息

División de Electrónica y Computación, Universidad de Guadalajara, CUCEI, Av. Revolución 1500, C.P. 44430, Guadalajara, Jal., Mexico.

División de Electrónica y Computación, Universidad de Guadalajara, CUCEI, Av. Revolución 1500, C.P. 44430, Guadalajara, Jal., Mexico; DeustoTech, Faculty of Engineering, University of Deusto, Av. Universidades, 24, 48007 Bilbao, Spain.

出版信息

Comput Methods Programs Biomed. 2021 Apr;201:105949. doi: 10.1016/j.cmpb.2021.105949. Epub 2021 Jan 27.

Abstract

BACKGROUND AND OBJECTIVE

Automatic segmentation of retinal blood vessels makes a major contribution in CADx of various ophthalmic and cardiovascular diseases. A procedure to segment thin and thick retinal vessels is essential for medical analysis and diagnosis of related diseases. In this article, a novel methodology for robust vessel segmentation is proposed, handling the existing challenges presented in the literature.

METHODS

The proposed methodology consists of three stages, pre-processing, main processing, and post-processing. The first stage consists of applying filters for image smoothing. The main processing stage is divided into two configurations, the first to segment thick vessels through the new optimized top-hat, homomorphic filtering, and median filter. Then, the second configuration is used to segment thin vessels using the proposed optimized top-hat, homomorphic filtering, matched filter, and segmentation using the MCET-HHO multilevel algorithm. Finally, morphological image operations are carried out in the post-processing stage.

RESULTS

The proposed approach was assessed by using two publicly available databases (DRIVE and STARE) through three performance metrics: specificity, sensitivity, and accuracy. Analyzing the obtained results, an average of 0.9860, 0.7578 and 0.9667 were respectively achieved for DRIVE dataset and 0.9836, 0.7474 and 0.9580 for STARE dataset.

CONCLUSIONS

The numerical results obtained by the proposed technique, achieve competitive average values with the up-to-date techniques. The proposed approach outperform all leading unsupervised methods discussed in terms of specificity and accuracy. In addition, it outperforms most of the state-of-the-art supervised methods without the computational cost associated with these algorithms. Detailed visual analysis has shown that a more precise segmentation of thin vessels was possible with the proposed approach when compared with other procedures.

摘要

背景与目的

视网膜血管的自动分割对多种眼科和心血管疾病的计算机辅助诊断有重要贡献。分割视网膜粗细血管的程序对于相关疾病的医学分析和诊断至关重要。本文提出了一种新颖的稳健血管分割方法,以应对文献中提出的现有挑战。

方法

所提出的方法包括三个阶段,即预处理、主处理和后处理。第一阶段包括应用滤波器进行图像平滑。主处理阶段分为两种配置,第一种通过新的优化顶帽变换、同态滤波和中值滤波器分割粗血管。然后,第二种配置使用所提出的优化顶帽变换、同态滤波、匹配滤波器,并使用MCET-HHO多级算法进行分割来分割细血管。最后,在后处理阶段进行形态学图像操作。

结果

通过使用两个公开可用的数据库(DRIVE和STARE),通过三个性能指标:特异性、敏感性和准确性对所提出的方法进行了评估。分析所得结果,DRIVE数据集分别平均达到0.9860、0.7578和0.9667,STARE数据集分别为0.9836、0.7474和0.9580。

结论

所提出的技术获得的数值结果与最新技术相比具有竞争力的平均值。所提出的方法在特异性和准确性方面优于所有讨论的领先无监督方法。此外,它在不具有这些算法相关计算成本的情况下优于大多数最新的监督方法。详细的视觉分析表明,与其他程序相比,所提出的方法能够更精确地分割细血管。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验