Center for Biomedical Informatics, Harvard Medical School, Boston, MA 02115-6030, USA.
Transl Psychiatry. 2012 Apr 10;2(4):e100. doi: 10.1038/tp.2012.10.
The Autism Diagnostic Observation Schedule-Generic (ADOS) is one of the most widely used instruments for behavioral evaluation of autism spectrum disorders. It is composed of four modules, each tailored for a specific group of individuals based on their language and developmental level. On average, a module takes between 30 and 60 min to deliver. We used a series of machine-learning algorithms to study the complete set of scores from Module 1 of the ADOS available at the Autism Genetic Resource Exchange (AGRE) for 612 individuals with a classification of autism and 15 non-spectrum individuals from both AGRE and the Boston Autism Consortium (AC). Our analysis indicated that 8 of the 29 items contained in Module 1 of the ADOS were sufficient to classify autism with 100% accuracy. We further validated the accuracy of this eight-item classifier against complete sets of scores from two independent sources, a collection of 110 individuals with autism from AC and a collection of 336 individuals with autism from the Simons Foundation. In both cases, our classifier performed with nearly 100% sensitivity, correctly classifying all but two of the individuals from these two resources with a diagnosis of autism, and with 94% specificity on a collection of observed and simulated non-spectrum controls. The classifier contained several elements found in the ADOS algorithm, demonstrating high test validity, and also resulted in a quantitative score that measures classification confidence and extremeness of the phenotype. With incidence rates rising, the ability to classify autism effectively and quickly requires careful design of assessment and diagnostic tools. Given the brevity, accuracy and quantitative nature of the classifier, results from this study may prove valuable in the development of mobile tools for preliminary evaluation and clinical prioritization-in particular those focused on assessment of short home videos of children--that speed the pace of initial evaluation and broaden the reach to a significantly larger percentage of the population at risk.
孤独症诊断观察量表-通用版(ADOS)是用于评估孤独症谱系障碍的最广泛使用的行为评估工具之一。它由四个模块组成,每个模块都根据个体的语言和发育水平量身定制。平均而言,一个模块需要 30 到 60 分钟的时间来完成。我们使用一系列机器学习算法来研究孤独症基因资源交换(AGRE)中可用的 ADOS 模块 1 的完整评分,这些评分来自于 612 名孤独症患者和 15 名来自 AGRE 和波士顿孤独症联合会(AC)的非孤独症患者。我们的分析表明,ADOS 模块 1 中的 29 项中有 8 项可以 100%准确地对孤独症进行分类。我们进一步通过来自两个独立来源的完整评分集验证了这个八项目分类器的准确性,一个是来自 AC 的 110 名孤独症患者的数据集,另一个是来自西蒙斯基金会的 336 名孤独症患者的数据集。在这两种情况下,我们的分类器的敏感性都接近 100%,正确地对这两个来源的所有但两名孤独症患者进行了分类,对观察和模拟的非孤独症对照组的特异性为 94%。该分类器包含了 ADOS 算法中的几个元素,证明了其具有很高的测试有效性,并且还产生了一个定量分数,用于衡量分类置信度和表型的极端程度。随着发病率的上升,有效快速地对孤独症进行分类需要仔细设计评估和诊断工具。鉴于该分类器的简洁性、准确性和定量性质,这项研究的结果可能会对移动工具的开发具有重要价值,这些工具可用于初步评估和临床优先级排序,特别是那些专注于评估儿童简短家庭视频的工具,从而加快初始评估的速度,并使更多处于风险中的人群能够受益。