Georgia Institute of Technology, Atlanta, GA 30332, USA.
Brief Bioinform. 2012 Jul;13(4):430-45. doi: 10.1093/bib/bbs026.
Recent advances in high-throughput biotechnologies have led to the rapid growing research interest in reverse engineering of biomolecular systems (REBMS). 'Data-driven' approaches, i.e. data mining, can be used to extract patterns from large volumes of biochemical data at molecular-level resolution while 'design-driven' approaches, i.e. systems modeling, can be used to simulate emergent system properties. Consequently, both data- and design-driven approaches applied to -omic data may lead to novel insights in reverse engineering biological systems that could not be expected before using low-throughput platforms. However, there exist several challenges in this fast growing field of reverse engineering biomolecular systems: (i) to integrate heterogeneous biochemical data for data mining, (ii) to combine top-down and bottom-up approaches for systems modeling and (iii) to validate system models experimentally. In addition to reviewing progress made by the community and opportunities encountered in addressing these challenges, we explore the emerging field of synthetic biology, which is an exciting approach to validate and analyze theoretical system models directly through experimental synthesis, i.e. analysis-by-synthesis. The ultimate goal is to address the present and future challenges in reverse engineering biomolecular systems (REBMS) using integrated workflow of data mining, systems modeling and synthetic biology.
近年来高通量生物技术的发展使得反向生物分子系统工程(REBMS)的研究兴趣迅速增长。“数据驱动”方法,即数据挖掘,可以用于从分子水平分辨率的大量生化数据中提取模式,而“设计驱动”方法,即系统建模,可以用于模拟新兴的系统特性。因此,应用于组学数据的这两种数据和设计驱动方法可能会在使用低通量平台之前为反向工程生物系统提供新的见解。然而,在反向工程生物分子系统这个快速发展的领域中存在着几个挑战:(i)整合异质生化数据进行数据挖掘,(ii)结合自上而下和自下而上的方法进行系统建模,(iii)通过实验验证系统模型。除了回顾社区取得的进展和在解决这些挑战中遇到的机会之外,我们还探讨了合成生物学这一新兴领域,这是一种通过实验合成(即分析综合)直接验证和分析理论系统模型的令人兴奋的方法。最终目标是使用数据挖掘、系统建模和合成生物学的综合工作流程来解决反向生物分子系统(REBMS)当前和未来的挑战。