GSK, Rixensart, Belgium.
NPJ Syst Biol Appl. 2020 Mar 13;6(1):6. doi: 10.1038/s41540-020-0127-y.
In biotechnology, the emergence of high-throughput technologies challenges the interpretation of large datasets. One way to identify meaningful outcomes impacting process and product attributes from large datasets is using systems biology tools such as metabolic models. However, these tools are still not fully exploited for this purpose in industrial context due to gaps in our knowledge and technical limitations. In this paper, key aspects restraining the routine implementation of these tools are highlighted in three research fields: monitoring, network science and hybrid modeling. Advances in these fields could expand the current state of systems biology applications in biopharmaceutical industry to address existing challenges in bioprocess development and improvement.
在生物技术领域,高通量技术的出现给大量数据集的解读带来了挑战。从大量数据集中识别出影响工艺和产品属性的有意义的结果的一种方法是使用系统生物学工具,如代谢模型。然而,由于我们知识上的差距和技术上的限制,这些工具在工业环境中还没有被充分用于这一目的。本文在三个研究领域中强调了限制这些工具常规应用的关键方面:监测、网络科学和混合建模。这些领域的进展可以将系统生物学在生物制药行业中的应用现状扩展到解决生物工艺开发和改进中存在的挑战。