Suppr超能文献

利用空间感知聚类技术实现大型成像质谱数据集的高效空间分割。

Efficient spatial segmentation of large imaging mass spectrometry datasets with spatially aware clustering.

机构信息

Center for Industrial Mathematics, University of Bremen, 28359 Bremen, Germany.

出版信息

Bioinformatics. 2011 Jul 1;27(13):i230-8. doi: 10.1093/bioinformatics/btr246.

Abstract

MOTIVATION

Imaging mass spectrometry (IMS) is one of the few measurement technology s of biochemistry which, given a thin sample, is able to reveal its spatial chemical composition in the full molecular range. IMS produces a hyperspectral image, where for each pixel a high-dimensional mass spectrum is measured. Currently, the technology is mature enough and one of the major problems preventing its spreading is the under-development of computational methods for mining huge IMS datasets. This article proposes a novel approach for spatial segmentation of an IMS dataset, which is constructed considering the important issue of pixel-to-pixel variability.

METHODS

We segment pixels by clustering their mass spectra. Importantly, we incorporate spatial relations between pixels into clustering, so that pixels are clustered together with their neighbors. We propose two methods. One is non-adaptive, where pixel neighborhoods are selected in the same manner for all pixels. The second one respects the structure observable in the data. For a pixel, its neighborhood is defined taking into account similarity of its spectrum to the spectra of adjacent pixels. Both methods have the linear complexity and require linear memory space (in the number of spectra).

RESULTS

The proposed segmentation methods are evaluated on two IMS datasets: a rat brain section and a section of a neuroendocrine tumor. They discover anatomical structure, discriminate the tumor region and highlight functionally similar regions. Moreover, our methods provide segmentation maps of similar or better quality if compared to the other state-of-the-art methods, but outperform them in runtime and/or required memory.

CONTACT

theodore@math.uni-bremen.de.

摘要

动机

成像质谱(IMS)是为数不多的能够在获取薄样本的情况下,揭示其全分子范围内空间化学成分的生物化学测量技术之一。IMS 生成超光谱图像,其中每个像素都测量到一个高维质谱。目前,该技术已经相当成熟,阻止其普及的主要问题之一是挖掘庞大的 IMS 数据集的计算方法尚未开发。本文提出了一种新的 IMS 数据集空间分割方法,该方法考虑到像素间可变性的重要问题进行构建。

方法

我们通过对其质谱进行聚类来分割像素。重要的是,我们将像素之间的空间关系纳入聚类中,以便将像素与其邻居聚类在一起。我们提出了两种方法。一种是非自适应的,对于所有像素,以相同的方式选择像素邻域。第二种方法则尊重数据中可观察到的结构。对于一个像素,其邻域是根据其光谱与相邻像素的光谱之间的相似性来定义的。这两种方法都具有线性复杂度,并且需要线性的内存空间(以光谱数为单位)。

结果

在所评估的两个 IMS 数据集上,即大鼠脑切片和神经内分泌肿瘤切片上,提出的分割方法可发现解剖结构,区分肿瘤区域并突出功能相似的区域。此外,如果与其他最先进的方法相比,我们的方法提供了质量相似或更好的分割图,但在运行时和/或所需内存方面优于它们。

联系人

theodore@math.uni-bremen.de

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/dd45/3117346/ca5c5cb72cc1/btr246f1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验