Suppr超能文献

细菌 α-N-甲基转移酶的催化混杂性。

Catalytic promiscuity of a bacterial α-N-methyltransferase.

机构信息

Department of Chemistry and Howard Hughes Medical Institute, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA.

出版信息

FEBS Lett. 2012 Sep 21;586(19):3391-7. doi: 10.1016/j.febslet.2012.07.050. Epub 2012 Jul 25.

Abstract

The posttranslational methylation of N-terminal α-amino groups (α-N-methylation) is a ubiquitous reaction found in all domains of life. Although this modification usually occurs on protein substrates, recent studies have shown that it also takes place on ribosomally synthesized natural products. Here we report an investigation of the bacterial α-N-methyltransferase CypM involved in the biosynthesis of the peptide antibiotic cypemycin. We demonstrate that CypM has low substrate selectivity and methylates a variety of oligopeptides, cyclic peptides such as nisin and haloduracin, and the ε-amino group of lysine. Hence it may have potential for enzyme engineering and combinatorial biosynthesis. Bayesian phylogenetic inference of bacterial α-N-methyltransferases suggests that they have not evolved as a specific group based on the chemical transformations they catalyze, but that they have been acquired from various other methyltransferase classes during evolution.

摘要

N-端α-氨基的翻译后甲基化(α-N-甲基化)是一种普遍存在于所有生命领域的反应。尽管这种修饰通常发生在蛋白质底物上,但最近的研究表明,它也发生在核糖体合成的天然产物上。在这里,我们报告了参与肽类抗生素 cypemycin 生物合成的细菌 α-N-甲基转移酶 CypM 的研究。我们证明 CypM 具有较低的底物选择性,并甲基化各种寡肽、环肽(如乳链菌肽和卤夫菌素)和赖氨酸的ε-氨基。因此,它可能具有酶工程和组合生物合成的潜力。细菌 α-N-甲基转移酶的贝叶斯系统发育推断表明,它们不是根据它们催化的化学转化而作为一个特定的组进化而来的,而是在进化过程中从各种其他甲基转移酶类中获得的。

相似文献

1
Catalytic promiscuity of a bacterial α-N-methyltransferase.
FEBS Lett. 2012 Sep 21;586(19):3391-7. doi: 10.1016/j.febslet.2012.07.050. Epub 2012 Jul 25.
2
Genome mining and genetic analysis of cypemycin biosynthesis reveal an unusual class of posttranslationally modified peptides.
Proc Natl Acad Sci U S A. 2010 Sep 14;107(37):16297-302. doi: 10.1073/pnas.1008608107. Epub 2010 Aug 30.
3
Substrate Specificity of a Methyltransferase Involved in the Biosynthesis of the Lantibiotic Cacaoidin.
Biochemistry. 2024 Oct 1;63(19):2493-2505. doi: 10.1021/acs.biochem.4c00150. Epub 2024 Sep 13.
4
Pseudomonas aeruginosa EftM Is a Thermoregulated Methyltransferase.
J Biol Chem. 2016 Feb 12;291(7):3280-90. doi: 10.1074/jbc.M115.706853. Epub 2015 Dec 16.
5
MT-MAMS: Protein Methyltransferase Motif Analysis by Mass Spectrometry.
J Proteome Res. 2018 Oct 5;17(10):3485-3491. doi: 10.1021/acs.jproteome.8b00396. Epub 2018 Sep 6.
6
Genetics of subtilin and nisin biosyntheses: biosynthesis of lantibiotics.
Antonie Van Leeuwenhoek. 1996 Feb;69(2):109-17. doi: 10.1007/BF00399416.
9
Biosynthetic investigation of phomopsins reveals a widespread pathway for ribosomal natural products in Ascomycetes.
Proc Natl Acad Sci U S A. 2016 Mar 29;113(13):3521-6. doi: 10.1073/pnas.1522907113. Epub 2016 Mar 15.
10
Molecular Basis for Autocatalytic Backbone N-Methylation in RiPP Natural Product Biosynthesis.
ACS Chem Biol. 2018 Oct 19;13(10):2989-2999. doi: 10.1021/acschembio.8b00668. Epub 2018 Sep 25.

引用本文的文献

1
De novo design of ribosomally synthesized and post-translationally modified peptides.
Nat Chem. 2025 Feb;17(2):233-245. doi: 10.1038/s41557-024-01685-9. Epub 2025 Jan 7.
2
Substrate Specificity of a Methyltransferase Involved in the Biosynthesis of the Lantibiotic Cacaoidin.
Biochemistry. 2024 Oct 1;63(19):2493-2505. doi: 10.1021/acs.biochem.4c00150. Epub 2024 Sep 13.
3
Methyltransferases from RiPP pathways: shaping the landscape of natural product chemistry.
Beilstein J Org Chem. 2024 Jul 18;20:1652-1670. doi: 10.3762/bjoc.20.147. eCollection 2024.
4
Discovery and engineering of ribosomally synthesized and post-translationally modified peptide (RiPP) natural products.
RSC Chem Biol. 2023 Nov 21;5(2):90-108. doi: 10.1039/d3cb00172e. eCollection 2024 Feb 7.
5
Non-Native Site-Selective Enzyme Catalysis.
Chem Rev. 2023 Aug 23;123(16):10381-10431. doi: 10.1021/acs.chemrev.3c00215. Epub 2023 Jul 31.
7
Emulating nonribosomal peptides with ribosomal biosynthetic strategies.
RSC Chem Biol. 2022 Dec 6;4(1):7-36. doi: 10.1039/d2cb00169a. eCollection 2023 Jan 4.
8
New developments in RiPP discovery, enzymology and engineering.
Nat Prod Rep. 2021 Jan 1;38(1):130-239. doi: 10.1039/d0np00027b. Epub 2020 Sep 16.
9
Substrate specificity of the cypemycin decarboxylase CypD.
Synth Syst Biotechnol. 2018 Sep 15;3(3):159-162. doi: 10.1016/j.synbio.2018.09.002. eCollection 2018 Sep.
10
Molecular Basis for Autocatalytic Backbone N-Methylation in RiPP Natural Product Biosynthesis.
ACS Chem Biol. 2018 Oct 19;13(10):2989-2999. doi: 10.1021/acschembio.8b00668. Epub 2018 Sep 25.

本文引用的文献

1
Discovery, biosynthesis, and engineering of lantipeptides.
Annu Rev Biochem. 2012;81:479-505. doi: 10.1146/annurev-biochem-060110-113521. Epub 2012 Mar 8.
2
Developmental regulation of N-terminal H2B methylation in Drosophila melanogaster.
Nucleic Acids Res. 2012 Feb;40(4):1536-49. doi: 10.1093/nar/gkr935. Epub 2011 Nov 3.
8
Plantazolicin, a novel microcin B17/streptolysin S-like natural product from Bacillus amyloliquefaciens FZB42.
J Bacteriol. 2011 Jan;193(1):215-24. doi: 10.1128/JB.00784-10. Epub 2010 Oct 22.
9
Genome mining and genetic analysis of cypemycin biosynthesis reveal an unusual class of posttranslationally modified peptides.
Proc Natl Acad Sci U S A. 2010 Sep 14;107(37):16297-302. doi: 10.1073/pnas.1008608107. Epub 2010 Aug 30.
10
NRMT is an alpha-N-methyltransferase that methylates RCC1 and retinoblastoma protein.
Nature. 2010 Aug 26;466(7310):1125-8. doi: 10.1038/nature09343.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验