Suppr超能文献

使用步态分析和动态平衡测量系统能否预测跌倒?养老院人群的前瞻性随访研究。

Can falls be predicted with gait analytical and posturographic measurement systems? A prospective follow-up study in a nursing home population.

机构信息

Department of Sport-Science, Martin-Luther-Universität Halle-Wittenberg, Halle (Saale), Germany.

出版信息

Clin Rehabil. 2013 Feb;27(2):183-90. doi: 10.1177/0269215512452880. Epub 2012 Jul 27.

Abstract

OBJECTIVE

To validate previously proposed findings and to develop an objective, feasible and efficient bifactorial (risk factors: gait impairment and balance disorders) fall risk assessment.

DESIGN

Prospective follow-up study Setting: Nursing homes (Halle/Saale, Germany).

SUBJECTS

One hundred and forty-six nursing home residents (aged 62-101 years) were recruited.

METHODS

Gait data were collected using a mobile inertial sensor-based system (RehaWatch). Postural regulation data were measured with the Interactive Balance System. Falls were recorded in standardized protocols over a follow-up period of 12 months.

MAIN MEASURES

Gait parameters (e.g. spatial-temporal parameters), posturographic parameters (e.g. postural subsystems), number of falls.

RESULTS

Seventeen (12%) of the participants had more than two falls per year. The predictive validity of the previously selected posturographic parameters was inadequate (sensitivity: 47%). The new measurement tool defined 67 participants showing an increased risk of falls. In reality, only 8 participants actually fell more than twice during the follow-up period (positive predictive value (PPV): 12%). The negative predictive value (NPV) was 88%. The posturographic frequency range F2-4 (peripheral-vestibular system), stride time and standard deviation of landing phase were the most powerful parameters for fall prediction. Gait and postural variability were larger in the high-risk group (e.g. gait speed; confidence interval (CI)(high): 0.57-0.79 vs. CI(low): 0.72-0.81 m/s).

CONCLUSION

RehaWatch and the Interactive Balance System are able to measure two of the most important fall risk factors, but their current predictive ability is not satisfactory yet. The correlation with physiological mechanisms is only shown by the Interactive Balance System.

摘要

目的

验证先前提出的发现,并开发一种客观、可行和有效的双因素(风险因素:步态障碍和平衡障碍)跌倒风险评估。

设计

前瞻性随访研究。地点:疗养院(德国哈勒/萨勒)。

受试者

招募了 146 名疗养院居民(年龄 62-101 岁)。

方法

使用基于移动惯性传感器的系统(RehaWatch)收集步态数据。使用交互式平衡系统测量姿势调节数据。在 12 个月的随访期间,按照标准化方案记录跌倒情况。

主要措施

步态参数(例如时空参数)、姿势描记参数(例如姿势子系统)、跌倒次数。

结果

17 名(12%)参与者每年跌倒超过两次。先前选择的姿势描记参数的预测有效性不足(敏感性:47%)。新的测量工具定义了 67 名跌倒风险增加的参与者。实际上,在随访期间只有 8 名参与者跌倒超过两次(阳性预测值(PPV):12%)。阴性预测值(NPV)为 88%。姿势描记术的频率范围 F2-4(周围-前庭系统)、步幅时间和着地点相位标准差是跌倒预测最有力的参数。高风险组的步态和姿势变异性更大(例如,步速;置信区间(高):0.57-0.79 与置信区间(低):0.72-0.81 m/s)。

结论

RehaWatch 和交互式平衡系统能够测量两个最重要的跌倒风险因素,但它们目前的预测能力还不尽如人意。与生理机制的相关性仅由交互式平衡系统显示。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验