Suppr超能文献

使用可穿戴系统预测社区居住的老年人跌倒风险。

Prediction of fall risk among community-dwelling older adults using a wearable system.

机构信息

School of Biological and Health Systems Engineering, Arizona State University, Tempe, AZ, 85281, USA.

Crean College of Health and Behavioral Sciences, Chapman University, Irvine, CA, 92618, USA.

出版信息

Sci Rep. 2021 Oct 25;11(1):20976. doi: 10.1038/s41598-021-00458-5.

Abstract

Falls are among the most common cause of decreased mobility and independence in older adults and rank as one of the most severe public health problems with frequent fatal consequences. In the present study, gait characteristics from 171 community-dwelling older adults were evaluated to determine their predictive ability for future falls using a wearable system. Participants wore a wearable sensor (inertial measurement unit, IMU) affixed to the sternum and performed a 10-m walking test. Measures of gait variability, complexity, and smoothness were extracted from each participant, and prospective fall incidence was evaluated over the following 6-months. Gait parameters were refined to better represent features for a random forest classifier for the fall-risk classification utilizing three experiments. The results show that the best-trained model for faller classification used both linear and nonlinear gait parameters and achieved an overall 81.6 ± 0.7% accuracy, 86.7 ± 0.5% sensitivity, 80.3 ± 0.2% specificity in the blind test. These findings augment the wearable sensor's potential as an ambulatory fall risk identification tool in community-dwelling settings. Furthermore, they highlight the importance of gait features that rely less on event detection methods, and more on time series analysis techniques. Fall prevention is a critical component in older individuals' healthcare, and simple models based on gait-related tasks and a wearable IMU sensor can determine the risk of future falls.

摘要

跌倒在老年人中是导致活动能力下降和独立性降低的最常见原因之一,也是最严重的公共卫生问题之一,常导致严重后果甚至死亡。本研究采用可穿戴系统评估了 171 名社区居住的老年人的步态特征,以确定其对未来跌倒的预测能力。参与者佩戴固定在胸骨上的可穿戴传感器(惯性测量单元,IMU),并进行 10 米步行测试。从每位参与者中提取步态变异性、复杂性和流畅性的测量值,并在接下来的 6 个月内评估未来跌倒的发生率。为了更好地代表随机森林分类器的特征,利用三个实验对步态参数进行了优化,以进行跌倒风险分类。结果表明,用于跌倒者分类的最佳训练模型同时使用线性和非线性步态参数,在盲测中达到了 81.6±0.7%的整体准确率、86.7±0.5%的灵敏度和 80.3±0.2%的特异性。这些发现增加了可穿戴传感器在社区环境中作为移动跌倒风险识别工具的潜力。此外,它们还强调了依赖于事件检测方法较少,而更多地依赖于时间序列分析技术的步态特征的重要性。预防跌倒是老年人医疗保健的一个关键组成部分,基于与步态相关的任务和可穿戴 IMU 传感器的简单模型可以确定未来跌倒的风险。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/effb/8545936/8c054db2712a/41598_2021_458_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验