Occupational and Environmental Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, 6120 Executive Blvd, Room 8106, MSC 7240, Bethesda, MD 20892-7240, USA.
Occup Environ Med. 2012 Oct;69(10):752-8. doi: 10.1136/oemed-2011-100524. Epub 2012 Jul 27.
Professional judgment is necessary to assess occupational exposure in population-based case-control studies; however, the assessments lack transparency and are time-consuming to perform. To improve transparency and efficiency, we systematically applied decision rules to questionnaire responses to assess diesel exhaust exposure in the population-based case-control New England Bladder Cancer Study.
2631 participants reported 14 983 jobs; 2749 jobs were administered questionnaires ('modules') with diesel-relevant questions. We applied decision rules to assign exposure metrics based either on the occupational history (OH) responses (OH estimates) or on the module responses (module estimates); we then combined the separate OH and module estimates (OH/module estimates). Each job was also reviewed individually to assign exposure (one-by-one review estimates). We evaluated the agreement between the OH, OH/module and one-by-one review estimates.
The proportion of exposed jobs was 20-25% for all jobs, depending on approach, and 54-60% for jobs with diesel-relevant modules. The OH/module and one-by-one review estimates had moderately high agreement for all jobs (κ(w)=0.68-0.81) and for jobs with diesel-relevant modules (κ(w)=0.62-0.78) for the probability, intensity and frequency metrics. For exposed subjects, the Spearman correlation statistic was 0.72 between the cumulative OH/module and one-by-one review estimates.
The agreement seen here may represent an upper level of agreement because the algorithm and one-by-one review estimates were not fully independent. This study shows that applying decision-based rules can reproduce a one-by-one review, increase transparency and efficiency, and provide a mechanism to replicate exposure decisions in other studies.
在基于人群的病例对照研究中,职业暴露评估需要专业判断;然而,这些评估缺乏透明度,且执行起来耗时耗力。为了提高透明度和效率,我们系统地应用决策规则来评估基于人群的病例对照新英格兰膀胱癌研究中的柴油废气暴露。
2631 名参与者报告了 14983 项工作;2749 项工作接受了有柴油相关问题的调查问卷(“模块”)。我们应用决策规则来分配基于职业史(OH)回答的暴露指标(OH 估计值)或基于模块回答的暴露指标(模块估计值);然后,我们合并了单独的 OH 和模块估计值(OH/模块估计值)。每一份工作也单独进行了审查,以分配暴露情况(逐一审查估计值)。我们评估了 OH、OH/模块和逐一审查估计值之间的一致性。
所有工作的暴露工作比例取决于方法,在 20-25%之间,而与柴油相关的模块的工作比例为 54-60%。OH/模块和逐一审查估计值在所有工作(κ(w)=0.68-0.81)和与柴油相关模块的工作(κ(w)=0.62-0.78)中具有较高的一致性,用于概率、强度和频率指标。对于暴露组,累积 OH/模块和逐一审查估计值之间的斯皮尔曼相关统计量为 0.72。
这里看到的一致性可能代表了更高的一致性水平,因为算法和逐一审查估计值并非完全独立。本研究表明,应用基于决策的规则可以再现逐一审查,提高透明度和效率,并提供一种机制,以在其他研究中复制暴露决策。