Department of Bioinformatics, Centro de Investigación Príncipe Felipe (CIPF), Valencia, Spain.
Nucleic Acids Res. 2012 Nov 1;40(20):e158. doi: 10.1093/nar/gks699. Epub 2012 Jul 27.
Genomic experiments (e.g. differential gene expression, single-nucleotide polymorphism association) typically produce ranked list of genes. We present a simple but powerful approach which uses protein-protein interaction data to detect sub-networks within such ranked lists of genes or proteins. We performed an exhaustive study of network parameters that allowed us concluding that the average number of components and the average number of nodes per component are the parameters that best discriminate between real and random networks. A novel aspect that increases the efficiency of this strategy in finding sub-networks is that, in addition to direct connections, also connections mediated by intermediate nodes are considered to build up the sub-networks. The possibility of using of such intermediate nodes makes this approach more robust to noise. It also overcomes some limitations intrinsic to experimental designs based on differential expression, in which some nodes are invariant across conditions. The proposed approach can also be used for candidate disease-gene prioritization. Here, we demonstrate the usefulness of the approach by means of several case examples that include a differential expression analysis in Fanconi Anemia, a genome-wide association study of bipolar disorder and a genome-scale study of essentiality in cancer genes. An efficient and easy-to-use web interface (available at http://www.babelomics.org) based on HTML5 technologies is also provided to run the algorithm and represent the network.
基因组实验(例如差异基因表达、单核苷酸多态性关联)通常会生成基因的排序列表。我们提出了一种简单但强大的方法,该方法使用蛋白质-蛋白质相互作用数据来检测此类基因或蛋白质排序列表中的子网络。我们对网络参数进行了详尽的研究,得出的结论是,平均组件数和每个组件的平均节点数是区分真实网络和随机网络的最佳参数。这种策略在寻找子网络方面提高效率的一个新颖方面是,除了直接连接之外,还考虑通过中间节点介导的连接来构建子网络。这种方法能够使用中间节点,使其对噪声具有更强的鲁棒性。它还克服了基于差异表达的实验设计中固有的一些局限性,在这些设计中,一些节点在条件之间是不变的。所提出的方法也可用于候选疾病基因的优先级排序。在这里,我们通过几个案例示例证明了该方法的有效性,其中包括范可尼贫血症的差异表达分析、双相情感障碍的全基因组关联研究以及癌症基因的全基因组必需性研究。还提供了一个基于 HTML5 技术的高效且易于使用的网络界面(可在 http://www.babelomics.org 上获得),用于运行算法和表示网络。