Schweinberger Michael
J Am Stat Assoc. 2011 Dec 1;106(496):1361-1370. doi: 10.1198/jasa.2011.tm10747. Epub 2012 Jan 24.
In applications to dependent data, first and foremost relational data, a number of discrete exponential family models has turned out to be near-degenerate and problematic in terms of Markov chain Monte Carlo simulation and statistical inference. We introduce the notion of instability with an eye to characterize, detect, and penalize discrete exponential family models that are near-degenerate and problematic in terms of Markov chain Monte Carlo simulation and statistical inference. We show that unstable discrete exponential family models are characterized by excessive sensitivity and near-degeneracy. In special cases, the subset of the natural parameter space corresponding to non-degenerate distributions and mean-value parameters far from the boundary of the mean-value parameter space turns out to be a lower-dimensional subspace of the natural parameter space. These characteristics of unstable discrete exponential family models tend to obstruct Markov chain Monte Carlo simulation and statistical inference. In applications to relational data, we show that discrete exponential family models with Markov dependence tend to be unstable and that the parameter space of some curved exponential families contains unstable subsets.
在应用于相关数据(首先是关系数据)时,事实证明,一些离散指数族模型在马尔可夫链蒙特卡罗模拟和统计推断方面近乎退化且存在问题。我们引入不稳定性的概念,旨在刻画、检测并惩罚那些在马尔可夫链蒙特卡罗模拟和统计推断方面近乎退化且存在问题的离散指数族模型。我们表明,不稳定的离散指数族模型具有过度敏感性和近乎退化的特征。在特殊情况下,对应于非退化分布且均值参数远离均值参数空间边界的自然参数空间子集,结果是自然参数空间的一个低维子空间。不稳定离散指数族模型的这些特征往往会阻碍马尔可夫链蒙特卡罗模拟和统计推断。在关系数据的应用中,我们表明具有马尔可夫依赖性的离散指数族模型往往是不稳定的,并且一些弯曲指数族的参数空间包含不稳定子集。