Suppr超能文献

用关联学习模型解释人类视觉皮层中的神经信号。

Explaining neural signals in human visual cortex with an associative learning model.

作者信息

Jiang Jiefeng, Schmajuk Nestor, Egner Tobias

机构信息

Department of Psychology & Neuroscience, Duke University, USA.

出版信息

Behav Neurosci. 2012 Aug;126(4):575-81. doi: 10.1037/a0029029.

Abstract

"Predictive coding" models posit a key role for associative learning in visual cognition, viewing perceptual inference as a process of matching (learned) top-down predictions (or expectations) against bottom-up sensory evidence. At the neural level, these models propose that each region along the visual processing hierarchy entails one set of processing units encoding predictions of bottom-up input, and another set computing mismatches (prediction error or surprise) between predictions and evidence. This contrasts with traditional views of visual neurons operating purely as bottom-up feature detectors. In support of the predictive coding hypothesis, a recent human neuroimaging study (Egner, Monti, & Summerfield, 2010) showed that neural population responses to expected and unexpected face and house stimuli in the "fusiform face area" (FFA) could be well-described as a summation of hypothetical face-expectation and -surprise signals, but not by feature detector responses. Here, we used computer simulations to test whether these imaging data could be formally explained within the broader framework of a mathematical neural network model of associative learning (Schmajuk, Gray, & Lam, 1996). Results show that FFA responses could be fit very closely by model variables coding for conditional predictions (and their violations) of stimuli that unconditionally activate the FFA. These data document that neural population signals in the ventral visual stream that deviate from classic feature detection responses can formally be explained by associative prediction and surprise signals.

摘要

“预测编码”模型假定关联学习在视觉认知中起关键作用,将知觉推理视为一个把(习得的)自上而下的预测(或期望)与自下而上的感官证据进行匹配的过程。在神经层面,这些模型提出,沿着视觉处理层级的每个区域都有一组处理单元对自下而上输入的预测进行编码,另一组处理单元则计算预测与证据之间的不匹配(预测误差或意外)。这与视觉神经元纯粹作为自下而上的特征探测器的传统观点形成对比。为支持预测编码假说,最近一项人类神经成像研究(埃格纳、蒙蒂和萨默菲尔德,2010年)表明,在“梭状面孔区”(FFA)中,神经群体对预期和意外的面孔及房屋刺激的反应,可以很好地描述为假设的面孔期望和意外信号的总和,而不能用特征探测器的反应来描述。在此,我们使用计算机模拟来测试这些成像数据是否能在关联学习的数学神经网络模型(施马尤克、格雷和林,1996年)这一更广泛的框架内得到正式解释。结果表明,FFA反应可以通过对无条件激活FFA的刺激的条件预测(及其违背情况)进行编码的模型变量非常紧密地拟合。这些数据证明,腹侧视觉流中偏离经典特征检测反应的神经群体信号可以通过关联预测和意外信号得到正式解释。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验