Suppr超能文献

从神经元网络的尖峰序列中检测 M 序列。

Detection of M-sequences from spike sequence in neuronal networks.

机构信息

Graduate School of Medicine, Osaka University, Suita, Osaka 565-0871, Japan.

出版信息

Comput Intell Neurosci. 2012;2012:862579. doi: 10.1155/2012/862579. Epub 2012 Jul 18.

Abstract

In circuit theory, it is well known that a linear feedback shift register (LFSR) circuit generates pseudorandom bit sequences (PRBS), including an M-sequence with the maximum period of length. In this study, we tried to detect M-sequences known as a pseudorandom sequence generated by the LFSR circuit from time series patterns of stimulated action potentials. Stimulated action potentials were recorded from dissociated cultures of hippocampal neurons grown on a multielectrode array. We could find several M-sequences from a 3-stage LFSR circuit (M3). These results show the possibility of assembling LFSR circuits or its equivalent ones in a neuronal network. However, since the M3 pattern was composed of only four spike intervals, the possibility of an accidental detection was not zero. Then, we detected M-sequences from random spike sequences which were not generated from an LFSR circuit and compare the result with the number of M-sequences from the originally observed raster data. As a result, a significant difference was confirmed: a greater number of "0-1" reversed the 3-stage M-sequences occurred than would have accidentally be detected. This result suggests that some LFSR equivalent circuits are assembled in neuronal networks.

摘要

在电路理论中,众所周知,线性反馈移位寄存器 (LFSR) 电路会产生伪随机比特序列 (PRBS),包括长度最长的 M 序列。在这项研究中,我们试图从刺激动作电位的时间序列模式中检测到由 LFSR 电路产生的已知伪随机序列 M 序列。刺激动作电位是从在多电极阵列上生长的海马神经元分离培养物中记录的。我们可以从 3 级 LFSR 电路 (M3) 中找到几个 M 序列。这些结果表明在神经网络中组装 LFSR 电路或其等效电路的可能性。然而,由于 M3 模式仅由四个尖峰间隔组成,偶然检测的可能性并非为零。然后,我们从不是由 LFSR 电路产生的随机尖峰序列中检测 M 序列,并将结果与原始观察到的光栅数据中的 M 序列数量进行比较。结果证实存在显著差异:反转 3 级 M 序列的“0-1”数比偶然检测到的要多。这一结果表明,一些 LFSR 等效电路被组装在神经网络中。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ca56/3407601/d9a4de46d8b1/CIN2012-862579.001.jpg

相似文献

1
Detection of M-sequences from spike sequence in neuronal networks.从神经元网络的尖峰序列中检测 M 序列。
Comput Intell Neurosci. 2012;2012:862579. doi: 10.1155/2012/862579. Epub 2012 Jul 18.
2
Spike Code Flow in Cultured Neuronal Networks.培养神经元网络中的尖峰编码流程
Comput Intell Neurosci. 2016;2016:7267691. doi: 10.1155/2016/7267691. Epub 2016 Apr 27.
4
Complex spike patterns in olfactory bulb neuronal networks.嗅球神经元网络中的复杂峰电位模式。
J Neurosci Methods. 2015 Jan 15;239:11-7. doi: 10.1016/j.jneumeth.2014.09.016. Epub 2014 Sep 26.
8

本文引用的文献

1
Random bin for analyzing neuron spike trains.随机神经元尖峰序列分析箱。
Comput Intell Neurosci. 2012;2012:153496. doi: 10.1155/2012/153496. Epub 2012 Jul 8.
3
Interaction of electrically evoked responses in networks of dissociated cortical neurons.离体皮层神经元网络中电诱发反应的相互作用。
Phys Rev E Stat Nonlin Soft Matter Phys. 2009 Sep;80(3 Pt 1):031906. doi: 10.1103/PhysRevE.80.031906. Epub 2009 Sep 18.
5
Resynchronization in neuronal network divided by femtosecond laser processing.
Neuroreport. 2008 May 7;19(7):771-5. doi: 10.1097/WNR.0b013e3282fdf6b3.
8
Dual coding hypotheses for neural information representation.神经信息表征的双重编码假说。
Math Biosci. 2007 Jun;207(2):312-21. doi: 10.1016/j.mbs.2006.09.009. Epub 2006 Sep 23.
10
Polychronization: computation with spikes.多步同步:基于脉冲的计算。
Neural Comput. 2006 Feb;18(2):245-82. doi: 10.1162/089976606775093882.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验