Suppr超能文献

培养神经网络的编码频谱与编码流模拟

Simulation of Code Spectrum and Code Flow of Cultured Neuronal Networks.

作者信息

Tamura Shinichi, Nishitani Yoshi, Hosokawa Chie, Miyoshi Tomomitsu, Sawai Hajime

机构信息

NBL Technovator Co., Ltd., 631 Shindachimakino, Sennan 590-0522, Japan.

Department of Radiology, Graduate School of Medicine, Osaka University, Suita 565-0871, Japan.

出版信息

Comput Intell Neurosci. 2016;2016:7186092. doi: 10.1155/2016/7186092. Epub 2016 Apr 27.

Abstract

It has been shown that, in cultured neuronal networks on a multielectrode, pseudorandom-like sequences (codes) are detected, and they flow with some spatial decay constant. Each cultured neuronal network is characterized by a specific spectrum curve. That is, we may consider the spectrum curve as a "signature" of its associated neuronal network that is dependent on the characteristics of neurons and network configuration, including the weight distribution. In the present study, we used an integrate-and-fire model of neurons with intrinsic and instantaneous fluctuations of characteristics for performing a simulation of a code spectrum from multielectrodes on a 2D mesh neural network. We showed that it is possible to estimate the characteristics of neurons such as the distribution of number of neurons around each electrode and their refractory periods. Although this process is a reverse problem and theoretically the solutions are not sufficiently guaranteed, the parameters seem to be consistent with those of neurons. That is, the proposed neural network model may adequately reflect the behavior of a cultured neuronal network. Furthermore, such prospect is discussed that code analysis will provide a base of communication within a neural network that will also create a base of natural intelligence.

摘要

研究表明,在多电极上培养的神经元网络中,可以检测到类似伪随机序列(代码),并且它们会以一定的空间衰减常数流动。每个培养的神经元网络都具有特定的频谱曲线。也就是说,我们可以将频谱曲线视为与其相关的神经元网络的“特征”,该特征取决于神经元的特性和网络配置,包括权重分布。在本研究中,我们使用了具有内在和瞬时特性波动的神经元积分发放模型,对二维网格神经网络上多电极的代码频谱进行模拟。我们表明,可以估计神经元的特性,例如每个电极周围神经元数量的分布及其不应期。尽管这个过程是一个逆问题,理论上解决方案并不充分,但这些参数似乎与神经元的参数一致。也就是说,所提出的神经网络模型可能充分反映了培养的神经元网络的行为。此外,还讨论了这样一种前景,即代码分析将为神经网络内的通信提供基础,这也将为自然智能创造基础。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c443/4863095/2589d3ab23b2/CIN2016-7186092.001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验