Suppr超能文献

静息换能器电流驱动预听哺乳动物耳蜗内毛细胞的自发性活动。

The resting transducer current drives spontaneous activity in prehearing mammalian cochlear inner hair cells.

机构信息

Department of Biomedical Science, University of Sheffield, Sheffield S10 2TN, United Kingdom.

出版信息

J Neurosci. 2012 Aug 1;32(31):10479-83. doi: 10.1523/JNEUROSCI.0803-12.2012.

Abstract

Spontaneous Ca(2+)-dependent electrical activity in the immature mammalian cochlea is thought to instruct the formation of the tonotopic map during the differentiation of sensory hair cells and the auditory pathway. This activity occurs in inner hair cells (IHCs) during the first postnatal week, and the pattern differs along the cochlea. During the second postnatal week, which is before the onset of hearing in most rodents, the resting membrane potential for IHCs is apparently more hyperpolarized (approximately -75 mV), and it remains unclear whether spontaneous action potentials continue to occur. We found that when mouse IHC hair bundles were exposed to the estimated in vivo endolymphatic Ca(2+) concentration (0.3 mm) present in the immature cochlea, the increased open probability of the mechanotransducer channels caused the cells to depolarize to around the action potential threshold (approximately -55 mV). We propose that, in vivo, spontaneous Ca(2+) action potentials are intrinsically generated by IHCs up to the onset of hearing and that they are likely to influence the final sensory-independent refinement of the developing cochlea.

摘要

在感觉毛细胞和听觉通路分化过程中,人们认为未成熟哺乳动物耳蜗中的自发 Ca(2+)-依赖性电活动指导了音位图谱的形成。这种活动发生在出生后第一周的内毛细胞 (IHC) 中,并且在耳蜗中沿不同的模式发生。在大多数啮齿动物听力开始之前的第二周,IHC 的静息膜电位显然更超极化(约为-75 mV),目前尚不清楚是否会继续发生自发动作电位。我们发现,当将小鼠 IHC 毛束暴露于估计在体内存在的内淋巴液 Ca(2+)浓度(0.3 mm)时,机械转导通道的开放概率增加会导致细胞去极化至动作电位阈值附近(约为-55 mV)。我们提出,在体内,自发的 Ca(2+) 动作电位是由 IHC 产生的,直到听力开始,并且它们可能会影响发育中的耳蜗的最终感觉独立的细化。

相似文献

1
The resting transducer current drives spontaneous activity in prehearing mammalian cochlear inner hair cells.
J Neurosci. 2012 Aug 1;32(31):10479-83. doi: 10.1523/JNEUROSCI.0803-12.2012.
4
Biophysical properties of CaV1.3 calcium channels in gerbil inner hair cells.
J Physiol. 2008 Feb 15;586(4):1029-42. doi: 10.1113/jphysiol.2007.145219. Epub 2008 Jan 3.
6
Onset of cholinergic efferent synaptic function in sensory hair cells of the rat cochlea.
J Neurosci. 2011 Oct 19;31(42):15092-101. doi: 10.1523/JNEUROSCI.2743-11.2011.
9
Position-dependent patterning of spontaneous action potentials in immature cochlear inner hair cells.
Nat Neurosci. 2011 Jun;14(6):711-7. doi: 10.1038/nn.2803. Epub 2011 May 15.

引用本文的文献

1
In vivo spontaneous Ca activity in the pre-hearing mammalian cochlea.
Nat Commun. 2025 Jan 2;16(1):29. doi: 10.1038/s41467-024-55519-w.
2
Priming central sound processing circuits through induction of spontaneous activity in the cochlea before hearing onset.
Trends Neurosci. 2024 Jul;47(7):522-537. doi: 10.1016/j.tins.2024.04.007. Epub 2024 May 22.
3
Control of stereocilia length during development of hair bundles.
PLoS Biol. 2023 Apr 3;21(4):e3001964. doi: 10.1371/journal.pbio.3001964. eCollection 2023 Apr.
4
A critical period of prehearing spontaneous Ca spiking is required for hair-bundle maintenance in inner hair cells.
EMBO J. 2023 Feb 15;42(4):e112118. doi: 10.15252/embj.2022112118. Epub 2023 Jan 3.
5
Neurovascular responses to neuronal activity during sensory development.
Front Cell Neurosci. 2022 Nov 11;16:1025429. doi: 10.3389/fncel.2022.1025429. eCollection 2022.
6
AAV-mediated rescue of expression restores hair-cell function in a mouse model of recessive deafness.
Mol Ther Methods Clin Dev. 2022 Jul 31;26:355-370. doi: 10.1016/j.omtm.2022.07.012. eCollection 2022 Sep 8.
7
Neuroplastin genetically interacts with Cadherin 23 and the encoded isoform Np55 is sufficient for cochlear hair cell function and hearing.
PLoS Genet. 2022 Jan 31;18(1):e1009937. doi: 10.1371/journal.pgen.1009937. eCollection 2022 Jan.
8
Resolution of subcomponents of synaptic release from postsynaptic currents in rat hair-cell/auditory-nerve fiber synapses.
J Neurophysiol. 2021 Jun 1;125(6):2444-2460. doi: 10.1152/jn.00450.2020. Epub 2021 May 5.
9
New Tmc1 Deafness Mutations Impact Mechanotransduction in Auditory Hair Cells.
J Neurosci. 2021 May 19;41(20):4378-4391. doi: 10.1523/JNEUROSCI.2537-20.2021. Epub 2021 Apr 6.
10
Axon-glia interactions in the ascending auditory system.
Dev Neurobiol. 2021 Jul;81(5):546-567. doi: 10.1002/dneu.22813. Epub 2021 Feb 26.

本文引用的文献

1
Inner hair cells are not required for survival of spiral ganglion neurons in the adult cochlea.
J Neurosci. 2012 Jan 11;32(2):405-10. doi: 10.1523/JNEUROSCI.4678-11.2012.
2
Functional assembly of mammalian cochlear hair cells.
Exp Physiol. 2012 Apr;97(4):438-51. doi: 10.1113/expphysiol.2011.059303. Epub 2011 Dec 5.
3
Prestin-driven cochlear amplification is not limited by the outer hair cell membrane time constant.
Neuron. 2011 Jun 23;70(6):1143-54. doi: 10.1016/j.neuron.2011.04.024.
4
Position-dependent patterning of spontaneous action potentials in immature cochlear inner hair cells.
Nat Neurosci. 2011 Jun;14(6):711-7. doi: 10.1038/nn.2803. Epub 2011 May 15.
5
Mechanisms underlying spontaneous patterned activity in developing neural circuits.
Nat Rev Neurosci. 2010 Jan;11(1):18-29. doi: 10.1038/nrn2759. Epub 2009 Dec 2.
6
Elementary properties of CaV1.3 Ca(2+) channels expressed in mouse cochlear inner hair cells.
J Physiol. 2010 Jan 1;588(Pt 1):187-99. doi: 10.1113/jphysiol.2009.181917. Epub 2009 Nov 16.
7
Tonotopic reorganization of developing auditory brainstem circuits.
Nat Neurosci. 2009 Jun;12(6):711-7. doi: 10.1038/nn.2332. Epub 2009 May 10.
8
Linking genes underlying deafness to hair-bundle development and function.
Nat Neurosci. 2009 Jun;12(6):703-10. doi: 10.1038/nn.2330. Epub 2009 May 26.
9
10
Tonotopic gradient in the developmental acquisition of sensory transduction in outer hair cells of the mouse cochlea.
J Neurophysiol. 2009 Jun;101(6):2961-73. doi: 10.1152/jn.00136.2009. Epub 2009 Apr 1.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验