Suppr超能文献

迈向个性化癌症纳米医学 - 过去、现在和未来。

Toward personalized cancer nanomedicine - past, present, and future.

机构信息

Ken and Ruth Davee Department of Neurology, The Brain Tumor Institute, The Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, IL 60611, USA.

出版信息

Integr Biol (Camb). 2013 Jan;5(1):48-65. doi: 10.1039/c2ib20104f.

Abstract

Tumors are composed of highly proliferate, migratory, invasive, and therapy-evading cells. These characteristics are conferred by an enormously complex landscape of genomic, (epi-)genetic, and proteomic aberrations. Recent efforts to comprehensively catalogue these reversible and irreversible modifications have began to identify molecular mechanisms that contribute to cancer pathophysiology, serve as novel therapeutic targets, and may constitute biomarkers for early diagnosis and prediction of therapy responses. With constantly evolving technologies that will ultimately enable a complete survey of cancer genomes, the challenges for discovery cancer science and drug development are daunting. Bioinformatic and functional studies must differentiate cancer-driving and -contributing mutations from mere bystanders or 'noise', and have to delineate their molecular mechanisms of action as a function of collaborating oncogenic and tumor suppressive signatures. In addition, the translation of these genomic discoveries into meaningful clinical endpoints requires the development of co-extinction strategies to therapeutically target multiple cancer genes, to robustly deliver therapeutics to tumor sites, and to enable widespread dissemination of therapies within tumor tissue. In this perspective, I will describe the most current paradigms to study and validate cancer gene function. I will highlight advances in the area of nanotechnology, in particular, the development of RNA interference (RNAi)-based platforms to more effectively deliver therapeutic agents to tumor sites, and to modulate critical cancer genes that are difficult to target using conventional small-molecule- or antibody-based approaches. I will conclude with an outlook on the deluge of challenges that genomic and bioengineering sciences must overcome to make the long-awaited era of personalized nano-medicine a clinical reality for cancer patients.

摘要

肿瘤由高度增殖、迁移、侵袭和逃避治疗的细胞组成。这些特性是由基因组、(表观)遗传和蛋白质组学异常的极其复杂的景观赋予的。最近,人们努力全面分类这些可逆和不可逆的修饰,以确定有助于癌症病理生理学的分子机制,作为新的治疗靶点,并可能构成早期诊断和预测治疗反应的生物标志物。随着不断发展的技术最终将能够全面调查癌症基因组,癌症科学和药物开发的发现挑战是艰巨的。生物信息学和功能研究必须将致癌和促进肿瘤的突变与仅仅是旁观者或“噪声”区分开来,并必须根据协作的致癌和肿瘤抑制特征来描绘其作用的分子机制。此外,将这些基因组发现转化为有意义的临床终点需要开发共同灭绝策略,以治疗性靶向多个癌症基因,将治疗剂有效地递送到肿瘤部位,并能够在肿瘤组织内广泛传播治疗方法。在这篇观点文章中,我将描述研究和验证癌症基因功能的最新范例。我将重点介绍纳米技术领域的进展,特别是开发基于 RNA 干扰 (RNAi) 的平台,以更有效地将治疗剂递送到肿瘤部位,并调节使用传统小分子或抗体方法难以靶向的关键癌症基因。我将展望基因组和生物工程科学必须克服的大量挑战,以使期待已久的个性化纳米医学时代成为癌症患者的临床现实。

相似文献

1
Toward personalized cancer nanomedicine - past, present, and future.
Integr Biol (Camb). 2013 Jan;5(1):48-65. doi: 10.1039/c2ib20104f.
3
Nanoplatforms for constructing new approaches to cancer treatment, imaging, and drug delivery: what should be the policy?
Neuroimage. 2011 Jan;54 Suppl 1(Suppl 1):S106-24. doi: 10.1016/j.neuroimage.2010.01.105. Epub 2010 Feb 10.
4
Targeted nanotherapeutics in cancer.
Int J Nanomedicine. 2014 Mar 26;9:1627-8. doi: 10.2147/IJN.S62468. eCollection 2014.
5
Epigenetics advancing personalized nanomedicine in cancer therapy.
Adv Drug Deliv Rev. 2012 Oct;64(13):1532-43. doi: 10.1016/j.addr.2012.08.004. Epub 2012 Aug 19.
6
Themed issue on Cancer Nanotechnology.
Integr Biol (Camb). 2013 Jan;5(1):17-8. doi: 10.1039/c2ib90050e.
7
Theranostic nanoplatforms for simultaneous cancer imaging and therapy: current approaches and future perspectives.
Nanoscale. 2012 Jan 21;4(2):330-42. doi: 10.1039/c1nr11277e. Epub 2011 Dec 1.
8
Synthetic Lethality: From Research to Precision Cancer Nanomedicine.
Curr Cancer Drug Targets. 2018;18(4):337-346. doi: 10.2174/1568009617666170630141931.
9
Nanotechnology, nanomedicine, and the development of new, effective therapies for cancer.
Nanomedicine. 2005 Jun;1(2):101-9. doi: 10.1016/j.nano.2005.03.002.
10
Cancer nanomedicine: from drug delivery to imaging.
Sci Transl Med. 2013 Dec 18;5(216):216rv4. doi: 10.1126/scitranslmed.3005872.

引用本文的文献

1
3,3'-((3,4,5-trifluoropHenyl)methylene)bis(4-hydroxy-2H-chromen-2-one) inhibit lung cancer cell proliferation and migration.
PLoS One. 2024 May 22;19(5):e0303186. doi: 10.1371/journal.pone.0303186. eCollection 2024.
2
Porphyrin Macrocycles: General Properties and Theranostic Potential.
Molecules. 2023 Jan 23;28(3):1149. doi: 10.3390/molecules28031149.
3
Spherical Nucleic Acids as Precision Therapeutics for the Treatment of Cancer-From Bench to Bedside.
Cancers (Basel). 2022 Mar 23;14(7):1615. doi: 10.3390/cancers14071615.
4
Role of Survivin in Bladder Cancer: Issues to Be Overcome When Designing an Efficient Dual Nano-Therapy.
Pharmaceutics. 2021 Nov 19;13(11):1959. doi: 10.3390/pharmaceutics13111959.
6
Ethanol extract of suppresses liver cancer cell proliferation and migration.
Chin Med. 2020 Jan 31;15:11. doi: 10.1186/s13020-020-0291-4. eCollection 2020.
7
Engineering a customized nanodrug delivery system at the cellular level for targeted cancer therapy.
Sci China Chem. 2018 Apr;61(4):497-504. doi: 10.1007/s11426-017-9176-3. Epub 2018 Jan 11.
8
Molecular Imaging of Cancer with Nanoparticle-Based Theranostic Probes.
Contrast Media Mol Imaging. 2017 Jun 19;2017:1026270. doi: 10.1155/2017/1026270. eCollection 2017.
9
Personalized Nanomedicine: A Revolution at the Nanoscale.
J Pers Med. 2017 Oct 12;7(4):12. doi: 10.3390/jpm7040012.
10
Dual bioluminescence and near-infrared fluorescence monitoring to evaluate spherical nucleic acid nanoconjugate activity in vivo.
Proc Natl Acad Sci U S A. 2017 Apr 18;114(16):4129-4134. doi: 10.1073/pnas.1702736114. Epub 2017 Apr 3.

本文引用的文献

1
Tumour micro-environment elicits innate resistance to RAF inhibitors through HGF secretion.
Nature. 2012 Jul 26;487(7408):500-4. doi: 10.1038/nature11183.
2
Safety profile of RNAi nanomedicines.
Adv Drug Deliv Rev. 2012 Dec;64(15):1730-7. doi: 10.1016/j.addr.2012.06.007. Epub 2012 Jun 22.
3
A murine lung cancer co-clinical trial identifies genetic modifiers of therapeutic response.
Nature. 2012 Mar 18;483(7391):613-7. doi: 10.1038/nature10937.
4
The RAF inhibitor paradox revisited.
Cancer Cell. 2012 Feb 14;21(2):147-9. doi: 10.1016/j.ccr.2012.01.017.
5
The genetic basis for cancer treatment decisions.
Cell. 2012 Feb 3;148(3):409-20. doi: 10.1016/j.cell.2012.01.014.
6
RAF around the edges--the paradox of BRAF inhibitors.
N Engl J Med. 2012 Jan 19;366(3):271-3. doi: 10.1056/NEJMe1111636.
7
Spherical nucleic acids.
J Am Chem Soc. 2012 Jan 25;134(3):1376-91. doi: 10.1021/ja209351u. Epub 2012 Jan 9.
9
Functional viability profiles of breast cancer.
Cancer Discov. 2011 Aug;1(3):260-73. doi: 10.1158/2159-8290.CD-11-0107. Epub 2011 Aug 2.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验