The Eli and Edythe L. Broad Institute, 7 Cambridge Center, Cambridge, Massachusetts 02142, USA.
Nature. 2012 Jul 26;487(7408):500-4. doi: 10.1038/nature11183.
Drug resistance presents a challenge to the treatment of cancer patients. Many studies have focused on cell-autonomous mechanisms of drug resistance. By contrast, we proposed that the tumour micro-environment confers innate resistance to therapy. Here we developed a co-culture system to systematically assay the ability of 23 stromal cell types to influence the innate resistance of 45 cancer cell lines to 35 anticancer drugs. We found that stroma-mediated resistance is common, particularly to targeted agents. We characterized further the stroma-mediated resistance of BRAF-mutant melanoma to RAF inhibitors because most patients with this type of cancer show some degree of innate resistance. Proteomic analysis showed that stromal cell secretion of hepatocyte growth factor (HGF) resulted in activation of the HGF receptor MET, reactivation of the mitogen-activated protein kinase (MAPK) and phosphatidylinositol-3-OH kinase (PI(3)K)-AKT signalling pathways, and immediate resistance to RAF inhibition. Immunohistochemistry experiments confirmed stromal cell expression of HGF in patients with BRAF-mutant melanoma and showed a significant correlation between HGF expression by stromal cells and innate resistance to RAF inhibitor treatment. Dual inhibition of RAF and either HGF or MET resulted in reversal of drug resistance, suggesting RAF plus HGF or MET inhibitory combination therapy as a potential therapeutic strategy for BRAF-mutant melanoma. A similar resistance mechanism was uncovered in a subset of BRAF-mutant colorectal and glioblastoma cell lines. More generally, this study indicates that the systematic dissection of interactions between tumours and their micro-environment can uncover important mechanisms underlying drug resistance.
耐药性是癌症患者治疗的一大挑战。许多研究都集中在细胞自主耐药机制上。相比之下,我们提出肿瘤微环境赋予了治疗的先天耐药性。在这里,我们开发了一种共培养系统,系统地检测了 23 种基质细胞类型影响 45 种癌细胞系对 35 种抗癌药物先天耐药性的能力。我们发现基质介导的耐药性很常见,特别是针对靶向药物。我们进一步研究了 BRAF 突变型黑色素瘤对 RAF 抑制剂的基质介导耐药性,因为大多数患有这种类型癌症的患者都表现出一定程度的先天耐药性。蛋白质组学分析表明,基质细胞分泌的肝细胞生长因子(HGF)导致 HGF 受体 MET 的激活、丝裂原激活蛋白激酶(MAPK)和磷脂酰肌醇-3-羟基激酶(PI(3)K)-AKT 信号通路的再激活,并立即对 RAF 抑制产生耐药性。免疫组织化学实验证实了 BRAF 突变型黑色素瘤患者中基质细胞表达 HGF,并表明基质细胞中 HGF 的表达与 RAF 抑制剂治疗的先天耐药性之间存在显著相关性。RAF 和 HGF 或 MET 的双重抑制导致耐药性逆转,这表明 RAF 加 HGF 或 MET 抑制联合治疗可能是 BRAF 突变型黑色素瘤的一种潜在治疗策略。在一部分 BRAF 突变型结直肠癌和胶质母细胞瘤细胞系中也发现了类似的耐药机制。更普遍地说,这项研究表明,系统地剖析肿瘤与其微环境之间的相互作用可以揭示耐药性的重要机制。