Suppr超能文献

人源无酶蛋白和产物结合态天冬酰胺酶的结构:对自切割和底物水解机制的深入了解。

Structures of apo and product-bound human L-asparaginase: insights into the mechanism of autoproteolysis and substrate hydrolysis.

机构信息

Department of Biochemistry and Molecular Genetics, University of Illinois at Chicago, Chicago, IL 60607, USA.

出版信息

Biochemistry. 2012 Aug 28;51(34):6816-26. doi: 10.1021/bi300870g. Epub 2012 Aug 14.

Abstract

Asparaginases catalyze the hydrolysis of the amino acid asparagine to aspartate and ammonia. Bacterial asparaginases are used in cancer chemotherapy to deplete asparagine from the blood, because several hematological malignancies depend on extracellular asparagine for growth. To avoid the immune response against the bacterial enzymes, it would be beneficial to replace them with human asparaginases. However, unlike the bacterial asparaginases, the human enzymes have a millimolar K(m) value for asparagine, making them inefficient in depleting the amino acid from blood. To facilitate the development of human variants suitable for therapeutic use, we determined the structure of human l-asparaginase (hASNase3). This asparaginase is an N-terminal nucleophile (Ntn) family member that requires autocleavage between Gly167 and Thr168 to become catalytically competent. For most Ntn hydrolases, this autoproteolytic activation occurs efficiently. In contrast, hASNas3 is relatively stable in its uncleaved state, and this allowed us to observe the structure of the enzyme prior to cleavage. To determine the structure of the cleaved state, we exploited our discovery that the free amino acid glycine promotes complete cleavage of hASNase3. Both enzyme states were elucidated in the absence and presence of the product aspartate. Together, these structures provide insight into the conformational changes required for cleavage and the precise enzyme-substrate interactions. The new understanding of hASNase3 will serve to guide the design of variants that possess a decreased K(m) value for asparagine, making the human enzyme a suitable replacement for the bacterial asparaginases in cancer therapy.

摘要

天冬酰胺酶催化氨基酸天冬酰胺水解为天冬氨酸和氨。细菌天冬酰胺酶用于癌症化疗以从血液中耗尽天冬酰胺,因为几种血液系统恶性肿瘤依赖细胞外天冬酰胺生长。为了避免针对细菌酶的免疫反应,用人类天冬酰胺酶替代它们将是有益的。然而,与细菌天冬酰胺酶不同,人类酶对天冬酰胺的毫摩尔 K(m) 值,使得它们从血液中耗尽氨基酸的效率较低。为了促进适合治疗用途的人类变体的开发,我们确定了人 l-天冬酰胺酶 (hASNase3) 的结构。这种天冬酰胺酶是 N-末端亲核体 (Ntn) 家族成员,需要甘氨酸 167 和苏氨酸 168 之间的自切割才能成为催化有效。对于大多数 Ntn 水解酶,这种自动蛋白水解激活作用效率很高。相比之下,hASNas3 在未切割状态下相对稳定,这使我们能够在切割之前观察到酶的结构。为了确定切割状态的结构,我们利用我们的发现,即游离氨基酸甘氨酸促进 hASNase3 的完全切割。在没有和存在产物天冬氨酸的情况下阐明了这两种酶状态。这些结构共同提供了对切割所需的构象变化以及精确的酶-底物相互作用的深入了解。对 hASNase3 的新认识将有助于指导设计具有降低的天冬酰胺 K(m) 值的变体,从而使人类酶成为癌症治疗中细菌天冬酰胺酶的合适替代品。

相似文献

10
Structure and function of the thermostable L-asparaginase from Thermococcus kodakarensis.耐热海栖热袍菌 L-天冬酰胺酶的结构与功能。
Acta Crystallogr D Struct Biol. 2017 Nov 1;73(Pt 11):889-895. doi: 10.1107/S2059798317014711. Epub 2017 Oct 20.

引用本文的文献

3
Towards a dependable data set of structures for L-asparaginase research.致力于建立一个可靠的 L-天冬酰胺酶结构数据集。
Acta Crystallogr D Struct Biol. 2024 Jul 1;80(Pt 7):506-527. doi: 10.1107/S2059798324005461. Epub 2024 Jun 27.

本文引用的文献

1
Divergence and convergence in enzyme evolution.酶进化的分歧与趋同。
J Biol Chem. 2012 Jan 2;287(1):21-28. doi: 10.1074/jbc.R111.241976. Epub 2011 Nov 8.
6
The mechanism of autocatalytic activation of plant-type L-asparaginases.植物型L-天冬酰胺酶的自催化激活机制。
J Biol Chem. 2008 May 9;283(19):13388-97. doi: 10.1074/jbc.M800746200. Epub 2008 Mar 10.
8
Inference of macromolecular assemblies from crystalline state.从晶体状态推断大分子组装体
J Mol Biol. 2007 Sep 21;372(3):774-97. doi: 10.1016/j.jmb.2007.05.022. Epub 2007 May 13.
10
L-asparaginase: a promising chemotherapeutic agent.L-天冬酰胺酶:一种有前景的化疗药物。
Crit Rev Biotechnol. 2007 Jan-Mar;27(1):45-62. doi: 10.1080/07388550601173926.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验