Suppr超能文献

木糖异构酶提高了巴斯德毕赤酵母和酿酒酵母利用生物质糖的生长和乙醇生产速率。

Xylose isomerase improves growth and ethanol production rates from biomass sugars for both Saccharomyces pastorianus and Saccharomyces cerevisiae.

机构信息

Department of Bioengineering, Clemson University, Clemson, SC 29634, USA.

出版信息

Biotechnol Prog. 2012 May-Jun;28(3):669-80. doi: 10.1002/btpr.1535.

Abstract

The demand for biofuel ethanol made from clean, renewable nonfood sources is growing. Cellulosic biomass, such as switch grass (Panicum virgatum L.), is an alternative feedstock for ethanol production; however, cellulosic feedstock hydrolysates contain high levels of xylose, which needs to be converted to ethanol to meet economic feasibility. In this study, the effects of xylose isomerase on cell growth and ethanol production from biomass sugars representative of switch grass were investigated using low cell density cultures. The lager yeast species Saccharomyces pastorianus was grown with immobilized xylose isomerase in the fermentation step to determine the impact of the glucose and xylose concentrations on the ethanol production rates. Ethanol production rates were improved due to xylose isomerase; however, the positive effect was not due solely to the conversion of xylose to xylulose. Xylose isomerase also has glucose isomerase activity, so to better understand the impact of the xylose isomerase on S. pastorianus, growth and ethanol production were examined in cultures provided fructose as the sole carbon. It was observed that growth and ethanol production rates were higher for the fructose cultures with xylose isomerase even in the absence of xylose. To determine whether the positive effects of xylose isomerase extended to other yeast species, a side-by-side comparison of S. pastorianus and Saccharomyces cerevisiae was conducted. These comparisons demonstrated that the xylose isomerase increased ethanol productivity for both the yeast species by increasing the glucose consumption rate. These results suggest that xylose isomerase can contribute to improved ethanol productivity, even without significant xylose conversion.

摘要

对由清洁、可再生的非食物资源制成的生物燃料乙醇的需求正在增长。纤维素生物质,如柳枝稷(Panicum virgatum L.),是生产乙醇的替代原料;然而,纤维素原料水解物含有高水平的木糖,需要将其转化为乙醇才能达到经济可行性。在这项研究中,使用低细胞密度培养物研究了木糖异构酶对柳枝稷生物质糖的细胞生长和乙醇生产的影响。在发酵步骤中,使用固定化木糖异构酶培养大酵母物种酿酒酵母(Saccharomyces pastorianus),以确定葡萄糖和木糖浓度对乙醇生产速率的影响。由于木糖异构酶的作用,乙醇生产速率得到了提高;然而,这种积极影响不仅仅是由于木糖转化为木酮糖。木糖异构酶还具有葡萄糖异构酶活性,因此,为了更好地了解木糖异构酶对酿酒酵母的影响,在仅提供果糖作为唯一碳源的培养物中检查了生长和乙醇生产。观察到,即使在没有木糖的情况下,添加木糖异构酶的果糖培养物的生长和乙醇生产速率更高。为了确定木糖异构酶的积极影响是否扩展到其他酵母物种,对酿酒酵母和酿酒酵母进行了并排比较。这些比较表明,木糖异构酶通过提高葡萄糖消耗率,提高了这两种酵母的乙醇生产率。这些结果表明,木糖异构酶即使没有显著的木糖转化,也可以有助于提高乙醇生产率。

相似文献

本文引用的文献

3
Fermentation of biomass sugars to ethanol using native industrial yeast strains.利用本土工业酵母菌株发酵生物质糖生产乙醇。
Bioresour Technol. 2011 Feb;102(3):3246-53. doi: 10.1016/j.biortech.2010.11.034. Epub 2010 Nov 13.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验