Institute of Integrative Biology, University of Liverpool, Liverpool, United Kingdom.
Proc Natl Acad Sci U S A. 2012 Aug 21;109(34):13608-13. doi: 10.1073/pnas.1200697109. Epub 2012 Aug 6.
Titin-like kinases are an important class of cytoskeletal kinases that intervene in the response of muscle to mechanical stimulation, being central to myofibril homeostasis and development. These kinases exist in autoinhibited states and, allegedly, become activated during muscle activity by the elastic unfolding of a C-terminal regulatory segment (CRD). However, this mechano-activation model remains controversial. Here we explore the structural, catalytic, and tensile properties of the multidomain kinase region of Caenorhabditis elegans twitchin (Fn(31)-Nlinker-kinase-CRD-Ig(26)) using X-ray crystallography, small angle X-ray scattering, molecular dynamics simulations, and catalytic assays. This work uncovers the existence of an inhibitory segment that flanks the kinase N-terminally (N-linker) and that acts synergistically with the canonical CRD tail to silence catalysis. The N-linker region has high mechanical lability and acts as the primary stretch-sensor in twitchin kinase, while the CRD is poorly responsive to pulling forces. This poor response suggests that the CRD is not a generic mechanosensor in this kinase family. Instead, the CRD is shown here to be permissive to catalysis and might protect the kinase active site against mechanical damage. Thus, we put forward a regulatory model where kinase inhibition results from the combined action of both N- and C-terminal tails, but only the N-terminal extension undergoes mechanical removal, thereby affording partial activation. Further, we compare invertebrate and vertebrate titin-like kinases and identify variations in the regulatory segments that suggest a mechanical speciation of these kinase classes.
肌联蛋白样激酶是一类重要的细胞骨架激酶,它们参与肌肉对机械刺激的反应,是肌原纤维稳态和发育的核心。这些激酶处于自动抑制状态,据称,在肌肉活动过程中,通过 C 端调节段(CRD)的弹性展开而被激活。然而,这种机械激活模型仍然存在争议。在这里,我们使用 X 射线晶体学、小角度 X 射线散射、分子动力学模拟和催化测定法,研究了秀丽隐杆线虫肌球蛋白(Fn(31)-Nlinker-kinase-CRD-Ig(26))的多结构域激酶区的结构、催化和拉伸特性。这项工作揭示了存在一个位于激酶 N 端(N 接头)侧翼的抑制片段,该片段与典型的 CRD 尾巴协同作用,抑制催化。N 接头区域具有较高的机械不稳定性,作为肌球蛋白激酶的主要拉伸传感器,而 CRD 对拉力的响应较差。这种较差的响应表明,CRD 不是该激酶家族中通用的机械传感器。相反,这里显示 CRD 允许催化,并可能保护激酶活性位点免受机械损伤。因此,我们提出了一个调节模型,其中激酶抑制是由 N 端和 C 端尾巴的共同作用产生的,但只有 N 端延伸发生机械去除,从而提供部分激活。此外,我们比较了无脊椎动物和脊椎动物的肌联蛋白样激酶,并确定了调节片段的变化,表明这些激酶类别的机械特化。