Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA.
Proc Natl Acad Sci U S A. 2012 Aug 21;109(34):13573-8. doi: 10.1073/pnas.1202946109. Epub 2012 Aug 6.
Single molecule force spectroscopy probes the strength, lifetime, and energetic details of intermolecular interactions in a simple experiment. A growing number of these studies have reported distinctly nonlinear trends in rupture force with loading rate that are typically explained in conventional models by invoking complex escape pathways. Recent analyses suggested that these trends should be expected even for simple barriers based on the basic assumptions of bond rupture dynamics and thus may represent the norm rather than the exception. Here we explore how these nonlinear trends reflect the two fundamental regimes of bond rupture: (i) a near-equilibrium regime, produced either by bond reforming in the case of a single bond or by asynchronized rupture of multiple individual bonds, and (ii) a kinetic regime produced by fast, non-equilibrium bond rupture. We analyze both single- and multi-bonded cases, describe the full evolution of the system as it transitions between near- and far-from-equilibrium loading regimes, and show that both interpretations produce essentially identical force spectra. Data from 10 different molecular systems show that this model provides a comprehensive description of force spectra for a diverse suite of bonds over experimentally relevant loading rates, removes the inconsistencies of previous interpretations of transition state distances, and gives ready access to both kinetic and thermodynamic information about the interaction. These results imply that single-molecule binding free energies for a vast number of bonds have already been measured.
单分子力谱技术在简单的实验中探测分子间相互作用的强度、寿命和能量细节。越来越多的这类研究报告了与加载速率相关的断裂力的明显非线性趋势,这些趋势通常在传统模型中通过引入复杂的逃逸途径来解释。最近的分析表明,即使对于基于键断裂动力学基本假设的简单势垒,也应该预期到这些趋势,因此它们可能代表常态而不是例外。在这里,我们探讨了这些非线性趋势如何反映键断裂的两个基本状态:(i)近平衡状态,这是由单键的键重组或多个单个键的同步断裂产生的;(ii)由快速非平衡键断裂产生的动力学状态。我们分析了单键和多键情况,描述了系统在近平衡和远离平衡加载状态之间的过渡的完整演化,并表明这两种解释都产生了基本相同的力谱。来自 10 个不同分子系统的数据表明,该模型为在实验相关的加载速率下广泛的键提供了对力谱的全面描述,消除了以前对过渡态距离的解释的不一致性,并提供了对相互作用的动力学和热力学信息的便捷访问。这些结果意味着,大量键的单分子结合自由能已经被测量。