Suppr超能文献

组合啁啾编码组织谐波和基波超声成像用于血管内超声:20-60 MHz 体模和离体结果。

Combined chirp coded tissue harmonic and fundamental ultrasound imaging for intravascular ultrasound: 20-60 MHz phantom and ex vivo results.

机构信息

NIH Resource on Medical Ultrasonic Transducer Technology, Department of Biomedical Engineering, University of Southern California, Los Angeles, CA 90089, USA.

出版信息

Ultrasonics. 2013 Feb;53(2):369-76. doi: 10.1016/j.ultras.2012.07.003. Epub 2012 Jul 21.

Abstract

The application of chirp coded excitation to pulse inversion tissue harmonic imaging can increase signal to noise ratio. On the other hand, the elevation of range side lobe level, caused by leakages of the fundamental signal, has been problematic in mechanical scanners which are still the most prevalent in high frequency intravascular ultrasound imaging. Fundamental chirp coded excitation imaging can achieve range side lobe levels lower than -60dB with Hanning window, but it yields higher side lobes level than pulse inversion chirp coded tissue harmonic imaging (PI-CTHI). Therefore, in this paper a combined pulse inversion chirp coded tissue harmonic and fundamental imaging mode (CPI-CTHI) is proposed to retain the advantages of both chirp coded harmonic and fundamental imaging modes by demonstrating 20-60MHz phantom and ex vivo results. A simulation study shows that the range side lobe level of CPI-CTHI is 16dB lower than PI-CTHI, assuming that the transducer translates incident positions by 50μm when two beamlines of pulse inversion pair are acquired. CPI-CTHI is implemented for a proto-typed intravascular ultrasound scanner capable of combined data acquisition in real-time. A wire phantom study shows that CPI-CTHI has a 12dB lower range side lobe level and a 7dB higher echo signal to noise ratio than PI-CTHI, while the lateral resolution and side lobe level are 50μm finer and -3dB less than fundamental chirp coded excitation imaging respectively. Ex vivo scanning of a rabbit trachea demonstrates that CPI-CTHI is capable of visualizing blood vessels as small as 200μm in diameter with 6dB better tissue contrast than either PI-CTHI or fundamental chirp coded excitation imaging. These results clearly indicate that CPI-CTHI may enhance tissue contrast with less range side lobe level than PI-CTHI.

摘要

啁啾编码激励在脉冲反转组织谐波成象中的应用可以提高信噪比值。另一方面,由于基波信号的泄漏,在机械扫描器中,旁瓣电平的提高一直是个问题,而机械扫描器在高频血管内超声成象中仍然最为普遍。基本啁啾编码激励成象可以用汉宁窗达到低于-60dB 的旁瓣电平,但它产生的旁瓣电平比脉冲反转啁啾编码组织谐波成象(PI-CTHI)高。因此,在本文中,提出了一种组合的脉冲反转啁啾编码组织谐波和基本成象模式(CPI-CTHI),通过对 20-60MHz 的仿体和离体结果进行演示,保留了啁啾编码谐波和基本成象模式的优点。模拟研究表明,CPI-CTHI 的旁瓣电平比 PI-CTHI 低 16dB,假设当两个脉冲反转对的波束线采集时,换能器将入射位置移动 50μm。CPI-CTHI 已在原型血管内超声扫描仪中实现,能够实时进行组合数据采集。线阵实验表明,CPI-CTHI 的旁瓣电平比 PI-CTHI 低 12dB,回波信号比噪比高 7dB,而横向分辨率和旁瓣电平分别比基本啁啾编码激励成象精细 50μm,低 3dB。对一只兔子气管的离体扫描表明,CPI-CTHI 能够显示直径小至 200μm 的血管,组织对比比 PI-CTHI 或基本啁啾编码激励成象分别高 6dB。这些结果清楚地表明,CPI-CTHI 可以在比 PI-CTHI 更低的旁瓣电平下增强组织对比度。

相似文献

3
Coded tissue harmonic imaging with nonlinear chirp signals.编码组织谐波成像与非线性啁啾信号。
Ultrasonics. 2011 May;51(4):516-21. doi: 10.1016/j.ultras.2010.12.005. Epub 2010 Dec 21.
4
Coded excitation for ultrasound tissue harmonic imaging.编码激励用于超声组织谐波成像。
Ultrasonics. 2010 May;50(6):613-9. doi: 10.1016/j.ultras.2010.01.001. Epub 2010 Jan 7.
5
Range side lobe inversion for chirp-encoded dual-band tissue harmonic imaging.线性调频双频段组织谐波成像的旁瓣反转。
IEEE Trans Ultrason Ferroelectr Freq Control. 2014 Feb;61(2):376-84. doi: 10.1109/TUFFC.2014.6722622.
6
Harmonic chirp imaging method for ultrasound contrast agent.用于超声造影剂的谐波啁啾成像方法。
IEEE Trans Ultrason Ferroelectr Freq Control. 2005 Feb;52(2):241-9. doi: 10.1109/tuffc.2005.1406550.
7
Chirp-encoded excitation for dual-frequency ultrasound tissue harmonic imaging.啁啾编码激励的双频超声组织谐波成像。
IEEE Trans Ultrason Ferroelectr Freq Control. 2012 Nov;59(11):2420-30. doi: 10.1109/TUFFC.2012.2474.
10

引用本文的文献

5
Multimodal Intravascular Photoacoustic and Ultrasound Imaging.多模态血管内光声和超声成像
Biomed Eng Lett. 2018 May;8(2):193-201. doi: 10.1007/s13534-018-0061-8. Epub 2018 Mar 26.

本文引用的文献

2
Real-time chirp-coded imaging with a programmable ultrasound biomicroscope.实时啁啾编码成像的可编程超声生物显微镜。
IEEE Trans Biomed Eng. 2010 Mar;57(3):654-64. doi: 10.1109/TBME.2009.2033036. Epub 2009 Sep 29.
3
Pulse inversion sequences for mechanically scanned transducers.用于机械扫描换能器的脉冲反转序列。
IEEE Trans Ultrason Ferroelectr Freq Control. 2008 Oct;55(10):2154-63. doi: 10.1109/TUFFC.915.
4
5
Harmonic imaging using multitone nonlinear coding.使用多音非线性编码的谐波成像。
Ultrasound Med Biol. 2007 Jul;33(7):1112-22. doi: 10.1016/j.ultrasmedbio.2007.02.001. Epub 2007 Apr 23.
6
Harmonic intravascular ultrasound imaging with a dual-frequency catheter.采用双频导管的谐波血管内超声成像。
Ultrasound Med Biol. 2006 Nov;32(11):1649-54. doi: 10.1016/j.ultrasmedbio.2006.05.024.
7
Nonlinear intravascular ultrasound contrast imaging.非线性血管内超声造影成像
Ultrasound Med Biol. 2006 Apr;32(4):491-502. doi: 10.1016/j.ultrasmedbio.2006.01.001.
8
Coded excitation for diagnostic ultrasound: a system developer's perspective.用于诊断超声的编码激励:系统开发者视角
IEEE Trans Ultrason Ferroelectr Freq Control. 2005 Feb;52(2):160-70. doi: 10.1109/tuffc.2005.1406543.
10
Motion artifacts of pulse inversion-based tissue harmonic imaging.基于脉冲反转的组织谐波成像中的运动伪像。
IEEE Trans Ultrason Ferroelectr Freq Control. 2002 Sep;49(9):1203-11. doi: 10.1109/tuffc.2002.1041536.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验