Suppr超能文献

Towards an understanding of the structural basis of 'forbidden' transport pathways in the Escherichia coli lactose carrier: mutations probing the energy barriers to uncoupled transport.

作者信息

King S C, Wilson T H

机构信息

Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02115.

出版信息

Mol Microbiol. 1990 Sep;4(9):1433-8. doi: 10.1111/j.1365-2958.1990.tb02053.x.

Abstract

Recent progress in the analysis of mutants of the Escherichia coli lactose carrier function is reviewed, with special emphasis on the structural basis for energy barriers which prevent 'forbidden' conformational changes. Mutations which break down the barriers to forbidden isomerizations involving the binary carrier:sugar (CS) and carrier:proton (CH) complexes have been obtained in several laboratories. These mutants allow uncoupled transport of H+ or galactoside in the lactose carrier which normally couples cation and sugar movement in a 1:1 stoichiometry. These uncoupled mutants appear to be associated with changes in both sugar and cation recognition, suggesting that the physical interactions forming the basis for co-substrate recognition and uncoupling are not independently variable. By postulating that translocation involves transformation of the stable intermediate of the co-transport cycle to unstable transition state conformations of the carrier, it is possible to consider the consequences of mutagenesis in terms of transition state theory. Consistent with several experimental observations, the analysis predicts in each mutant the occurrence of more than one abnormality in the transport cycle (such as changes in sugar recognition, cation recognition or the coupling reaction). We have called the general phenomenon a 'mutational double-effect' because any mutation which alters the Gibbs free energy change of one reaction in the transport cycle must affect the free energy change of at least one other reaction in this cycle.

摘要

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验