Rumpf Klemens, Granitzer Petra, Morales Puerto M, Poelt Peter, Reissner Michael
Institute of Physics, Karl Franzens University Graz, Universitaetsplatz 5, Graz, A-8010, Austria.
Nanoscale Res Lett. 2012 Aug 8;7(1):445. doi: 10.1186/1556-276X-7-445.
In the frame of this work, the aim was to create a superparamagnetic nanocomposite system with a maximized magnetic moment when magnetized by an external field and a blocking temperature far below room temperature. For this purpose, iron oxide nanoparticles of 3.8-, 5- and 8-nm size have been infiltrated into the pores of porous silicon. To fabricate tailored magnetic properties of the system, the particle size and the magnetic interactions among the particles play a crucial role. Different concentrations of the particles dispersed in hexane have been used for the infiltration to vary the blocking temperature TB, which indicates the transition between the superparamagnetic behavior and blocked state. TB is not only dependent on the particle size but also on the magnetic interactions between them, which can be varied by the particle-particle distance. Thus, a modification of the pore loading on the one hand and of the porous silicon morphology on the other hand results in a composite material with a desired blocking temperature. Because both materials, the mesoporous silicon matrices as well as the Fe3O4 nanoparticles, offer low toxicity, the system is a promising candidate for biomedical applications.
在本工作范围内,目标是创建一种超顺磁性纳米复合系统,该系统在外部磁场磁化时具有最大化的磁矩,且其阻塞温度远低于室温。为此,已将尺寸为3.8纳米、5纳米和8纳米的氧化铁纳米颗粒渗入多孔硅的孔隙中。为了制造该系统定制的磁性能,颗粒尺寸和颗粒间的磁相互作用起着关键作用。已使用分散在己烷中的不同浓度颗粒进行渗入,以改变阻塞温度TB,TB表示超顺磁性行为与阻塞状态之间的转变。TB不仅取决于颗粒尺寸,还取决于它们之间的磁相互作用,磁相互作用可通过颗粒间距离改变。因此,一方面改变孔隙负载,另一方面改变多孔硅形态,可得到具有所需阻塞温度的复合材料。由于介孔硅基质和Fe3O4纳米颗粒这两种材料都具有低毒性,该系统是生物医学应用的一个有前景的候选材料。